1,883 research outputs found

    America's Next Manufacturing Workforce: Promising Practices in Education and Skills Building

    Full text link
    The promising practices presented in this report demonstrate some of the most encouraging approaches for education and skill building of America’s new manufacturing workforce. These practices have been selected by a panel of experts from business, government, and education who serve on the MForesight Education and Workforce Development Working Group (EWD). This report summarizes a sampling of replicable and scalable promising practices being pursued to ensure that America builds an educated, skilled, and ready workforce. MForesight has not endorsed any particular product or method in presenting these promising practices, and is pleased to invite learning institutions, professional organizations, and manufacturers to submit descriptions of additional programs and initiatives serving similar purposes. In this way, MForesight hopes to build a community of practitioners and learners to help build an educated, skilled, and ready advanced manufacturing workforce. Concurrently, the EWD will continue its work to translate the key characteristics of these promising practices into policy and investment guidelines for government, industry, and educational enterprises that will support efforts to bring such practices to scale.National Science Foundation, Grant No. 1552534https://deepblue.lib.umich.edu/bitstream/2027.42/145154/1/WorkforceReport_Final.pd

    Integrated Photonics and Application-Specific Design on a Massive Open Online Course Platform

    Get PDF
    Silicon-based photonics is mobilizing into a manufacturing industry with specialized integrated circuit design requirements for applications in low power cloud computing, high speed wireless, smart sensing, and augmented imaging. The AIM Photonics Manufacturing USA Institute, which operates the world’s most advanced 300mm semiconductor research fab, has co-developed a Process Design Kit (PDK) in fabless circuit design for these expanding digital and analog applications; however, there currently isn’t available an in-depth curriculum to train engineers (academia, industry) in the AIM PDK process and Electronic Photonic Design Automation (EPDA) software. AIM Photonics Academy, an education initiative of AIM Photonics based at MIT, has collaborated with faculty to create three online MOOC edX courses that (1) introduce integrated photonics devices, and applications performance needs and metrics; and (2) train into the AIM PDK and specialized EPDA tools in a six week design project to lay out an application-specific photonic transceiver. The courses are structured around asynchronous video lectures and exploratory design problems that involve Python and Matlab-based first-principles calculations (systems modeling) or advanced EPDA tools (circuit design and layout). The online MOOC courses can optionally form a tandem blended learning component with two AIM Photonics Academy on-site training programs: the annual AIM Summer Academy one-week intensive program (held every July at MIT), or a photonic integrated circuit testing workshop (the first workshop is planned for fall 2019). These courses are a cornerstone effort at AIM to found and support a specialized cohort community of future integrated photonics designers

    The Boston University Photonics Center annual report 2013-2014

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2013-2014 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This annual report summarizes activities of the Boston University Photonics Center in the 2013–2014 academic year.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted 14.5Minnewresearchgrantsandcontractsthisyear.Facultyandstaffalsoexpandedtheireffortsineducationandtraining,throughNationalScienceFoundationsponsoredsitesforResearchExperiencesforUndergraduatesandforTeachers.Asacommunity,wehostedacompellingseriesofdistinguishedinvitedspeakers,andemphasizedthethemeofInnovationsattheIntersectionsofMicro/NanofabricationTechnology,Biology,andBiomedicineatourannualFutureofLightSymposium.Wetookaleadershiproleinrunningnationalworkshopsonemergingphotonicfields,includinganOSAIncubatoronControlledLightPropagationthroughComplexMedia,andanNSFWorkshoponNoninvasiveImagingofBrainFunction.HighlightsofourresearchachievementsfortheyearincludeadistinctivePresidentialEarlyCareerAwardforScientistsandEngineers(PECASE)forAssistantProfessorXueHan,anambitiousnewDoDsponsoredgrantforMultiScaleMultiDisciplinaryModelingofElectronicMaterialsledbyProfessorEnricoBellotti,launchofourNIHsponsoredCenterforInnovationinPointofCareTechnologiesfortheFutureofCancerCareledbyProfessorCathyKlapperich,andsuccessfulcompletionoftheambitiousIARPAfundedcontractforNextGenerationSolidImmersionMicroscopyforFaultIsolationinBackSideCircuitAnalysisledbyProfessorBennettGoldberg.Thesethreeprograms,whichrepresentmorethan14.5M in new research grants and contracts this year. Faculty and staff also expanded their efforts in education and training, through National Science Foundation–sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Innovations at the Intersections of Micro/Nanofabrication Technology, Biology, and Biomedicine at our annual Future of Light Symposium. We took a leadership role in running national workshops on emerging photonic fields, including an OSA Incubator on Controlled Light Propagation through Complex Media, and an NSF Workshop on Noninvasive Imaging of Brain Function. Highlights of our research achievements for the year include a distinctive Presidential Early Career Award for Scientists and Engineers (PECASE) for Assistant Professor Xue Han, an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, launch of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and successful completion of the ambitious IARPA-funded contract for Next Generation Solid Immersion Microscopy for Fault Isolation in Back-Side Circuit Analysis led by Professor Bennett Goldberg. These three programs, which represent more than 20M in research funding for the University, are indicative of the breadth of Photonics Center research interests: from fundamental modeling of optoelectronic materials to practical development of cancer diagnostics, from exciting new discoveries in optogenetics for understanding brain function to the achievement of world-record resolution in semiconductor circuit microscopy. Our community welcomed an auspicious cohort of new faculty members, including a newly hired assistant professor and a newly hired professor (and Chair of the Mechanical Engineering Department). The Industry/University Cooperative Research Center—the centerpiece of our translational biophotonics program—continues to focus on advancing the health care and medical device industries, and has entered its fourth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base

    The Boston University Photonics Center annual report 2013-2014

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2013-2014 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This annual report summarizes activities of the Boston University Photonics Center in the 2013–2014 academic year.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted 14.5Minnewresearchgrantsandcontractsthisyear.Facultyandstaffalsoexpandedtheireffortsineducationandtraining,throughNationalScienceFoundationsponsoredsitesforResearchExperiencesforUndergraduatesandforTeachers.Asacommunity,wehostedacompellingseriesofdistinguishedinvitedspeakers,andemphasizedthethemeofInnovationsattheIntersectionsofMicro/NanofabricationTechnology,Biology,andBiomedicineatourannualFutureofLightSymposium.Wetookaleadershiproleinrunningnationalworkshopsonemergingphotonicfields,includinganOSAIncubatoronControlledLightPropagationthroughComplexMedia,andanNSFWorkshoponNoninvasiveImagingofBrainFunction.HighlightsofourresearchachievementsfortheyearincludeadistinctivePresidentialEarlyCareerAwardforScientistsandEngineers(PECASE)forAssistantProfessorXueHan,anambitiousnewDoDsponsoredgrantforMultiScaleMultiDisciplinaryModelingofElectronicMaterialsledbyProfessorEnricoBellotti,launchofourNIHsponsoredCenterforInnovationinPointofCareTechnologiesfortheFutureofCancerCareledbyProfessorCathyKlapperich,andsuccessfulcompletionoftheambitiousIARPAfundedcontractforNextGenerationSolidImmersionMicroscopyforFaultIsolationinBackSideCircuitAnalysisledbyProfessorBennettGoldberg.Thesethreeprograms,whichrepresentmorethan14.5M in new research grants and contracts this year. Faculty and staff also expanded their efforts in education and training, through National Science Foundation–sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Innovations at the Intersections of Micro/Nanofabrication Technology, Biology, and Biomedicine at our annual Future of Light Symposium. We took a leadership role in running national workshops on emerging photonic fields, including an OSA Incubator on Controlled Light Propagation through Complex Media, and an NSF Workshop on Noninvasive Imaging of Brain Function. Highlights of our research achievements for the year include a distinctive Presidential Early Career Award for Scientists and Engineers (PECASE) for Assistant Professor Xue Han, an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, launch of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and successful completion of the ambitious IARPA-funded contract for Next Generation Solid Immersion Microscopy for Fault Isolation in Back-Side Circuit Analysis led by Professor Bennett Goldberg. These three programs, which represent more than 20M in research funding for the University, are indicative of the breadth of Photonics Center research interests: from fundamental modeling of optoelectronic materials to practical development of cancer diagnostics, from exciting new discoveries in optogenetics for understanding brain function to the achievement of world-record resolution in semiconductor circuit microscopy. Our community welcomed an auspicious cohort of new faculty members, including a newly hired assistant professor and a newly hired professor (and Chair of the Mechanical Engineering Department). The Industry/University Cooperative Research Center—the centerpiece of our translational biophotonics program—continues to focus on advancing the health care and medical device industries, and has entered its fourth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    PhoenixD Magazine - News from the German Cluster of Excellence on Optics and Photonics

    Get PDF
    News from the German Cluster of Excellence PhoenixD on Optics and Photonics at Leibniz University Hannover with reports, interviews, portraits and the PhoenixD chronicle. Scientific topics are integrated optics, optics production, optical materials and others.DFG - Deutsche Forschungsgemeinschaft/Exzellenzstrategie des Bundes und der Länder/EXC 2122, Projekt-ID 390833453/E

    Selected NSF projects of interest to K-12 engineering and technology education

    Get PDF
    The National Science Foundation (NSF) portfolio addressing K-12 engineering and technology education includes initiatives supported by a number of programs. This list includes projects identified by searching lists of awards in the respective NSF programs as well as projects suggested for inclusion by researchers, practitioners, and program officers. The list includes projects concerned with standards in technology education, teacher professional development, centers for learning and teaching, preparation of instructional materials, digital libraries, and technological activities in informal settings, as well as small numbers of projects in several other areas. This compilation provides current information on projects of interest to educators, instructional designers, consultants, and researchers who are concerned with the development, delivery, and evaluation of instruction to develop technological literacy, particularly in K-12 engineering and technology education. Projects are grouped under headings for each program providing primary funding. Within each program, the award numbers determine the order of listing, with the most recent awards at the beginning of the list. Each award entry includes the project title, NSF award number, funding program, amount of the award to date, starting and ending dates, the principal investigator (PI), the grantee institution, PI contact information, the url of the project Web site, a description of the project’s activities and accomplishments, relevant previous awards to the PI, products developed by the project, and information on the availability of those products

    The Boston University Photonics Center annual report 2009-2010

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center for the period from July 2009 through June 2010. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This report summarizes activities of the Boston University Photonics Center (BUPC) during the period July 2009 through June 2010. These activities span the Center’s complementary missions in education, research, technology development, and commercialization. In education, twenty-three BUPC graduate students received Ph.D. diplomas. BUPC faculty taught thirty-one photonics courses. Five graduate students were funded through the Photonics Fellowship Program. BUPC supported a Research Experiences for Undergraduates (REU) site in Photonics, which hosted summer interns in a ten-week program. Each REU student presented their research results to a panel of faculty and graduate students. Professors Goldberg and Swan continued their work with K-12 student outreach programs. Professor Goldberg’s Boston Urban Fellows Project started its sixth year. Professor Swan’s collaborative Four Schools for Women in Engineering program entered its third year. For more on our education programs, turn to the Education section on page 67. In research, BUPC faculty published journal papers spanning the field of photonics. Twelve patents were awarded to faculty this year for new innovations in the field. A number of awards for outstanding achievement in education and research were presented to BUPC faculty members. These honors include NSF CAREER Awards for Professors Altug, Dal Negro and Reinhard. New external grant funding for the 2009-2010 fiscal year totaled 21.1M,including21.1M, including 4.0M through a Cooperative Agreement with the U.S. Army Research Laboratory (ARL). For more information on our research activities, turn to the Research section on page 24. In technology development, the Department of Defense (DoD) continued to support the COBRA prototype systems. These photonics-technologies were pioneered by BUPC faculty and staff and have been deployed for field test and use at the United States Army Medical Research Institute for Infectious Diseases. New technology development projects for nuclear weapon detection, biodosimetry and terahertz imaging were launched and previously developed technologies for bacterial and viral sensing advanced toward commercial transition. For more information on our technology development pipeline and projects, turn to the Technology Development section on page 54. In commercialization, the business incubator continues to operate at capacity. Its tenants include more than a dozen technology companies with core business interests primarily in photonics and life sciences. It houses several companies founded by current and former BU faculty and students and provides students with an opportunity to assist, observe, and learn from start-up companies. For more information about business incubator activities, turn to the Business Incubation chapter in the Facilities and Equipment section on page 84. In early 2010, the BUPC unveiled a five-year strategic plan as part of the University’s comprehensive review of centers and institutes. The BUPC strategic plan will enhance the Center’s position as an international leader in photonics research. For more information about the strategic plan, turn to the BUPC Strategic Plan section on page 8

    A Modular Laboratory Curriculum for Teaching Integrated Photonics to Students with Diverse Backgrounds

    Get PDF
    A modular laboratory curriculum with exercises for students and lesson plans for teachers is presented. Fundamentals of basic integrated photonic (IP) devices can be taught, first as a lecture-in-the-lab followed by “hands-on” laboratory measurements. This comprehensive curriculum utilizes data collected from the “AIM Photonics Institute PIC education chip” that was designed specifically for the purpose of education, and was fabricated at AIM SUNY Poly. Training using this modular curriculum will be performed through the AIM Photonics Academy network in New York (NY) and Massachusetts (MA), either as a full semester course or as a condensed boot-camp. A synergistic development and delivery of this curriculum will coherently leverage multiple resources across the network and can serve as a model for education and workforce development in other Manufacturing USA institutes, as well as for overseas partners
    corecore