80,705 research outputs found

    CESEC Chair – Training Embedded System Architects for the Critical Systems Domain

    Get PDF
    Increasing complexity and interactions across scientific and tech- nological domains in the engineering of critical systems calls for new pedagogical approach. In this paper, we introduce the CESEC teaching chair. This chair aims at supporting new integrative ap- proach for the initial training of engineer and master curriculum to three engineering school in Toulouse: ISAE, INSA Toulouse and INP ENSEEIHT. It is supported by the EADS Corporate Foundation. In this paper, we highlight the rationale for this chair: need for sys- tem architect with strong foundations on technical domains appli- cable to the aerospace industry. We then introduce the ideal profile for this architect and the various pedagogical approaches imple- mented to reach this objective

    Skills development and recoding in engineering analysis and simulation : Industry needs

    Get PDF
    The EASIT2 project (Engineering Analysis and Simulation Innovation Transfer), funded under the European Union Lifelong Learning Programme, has the major goal to contribute to the competitiveness and quality of engineering, design and manufacturing in Europe through identifying the generic competencies that users of engineering analysis and simulation systems must possess. This competency framework will include a comprehensive Educational Base, a web-based interface compatible with other staff development systems, with links to associated resource material that engineers and analysts can use to develop and track their competencies. The project will also deliver an integrated Registered Analyst (RA) Scheme to provide recognition of achievement of these competencies. In order to help ensure that the deliverables of this project meet industry needs, a survey was undertaken and this paper summarises the findings of this survey. The survey comprised of an online questionnaire and was completed by 1094 respondents from 50 different countries. A large majority of respondents thought a system to define analyst skills and provide links to appropriate training resources would be useful. There was also strong support for a form of professional qualification in engineering analysis. The advantages to industry that these project deliverables would bring include incentives for staff development, marketing power and enhanced subcontractor qualification and internal resource management. The survey also provided a valuable insight into the current state of the engineering analysis and simulation industry. The most significant barriers to the effective use of engineering analysis were identified as recruitment of suitably qualified and experienced staff and a lack of analysis skills. “Pressure of work” was also identified as the most significant reason why organisations fail to get the most out of engineering analysis software. The findings of this survey are now being used in the development of the project deliverables to ensure that they meet the needs of industry as much as possible

    Shipboard Crisis Management: A Case Study.

    Get PDF
    The loss of the "Green Lily" in 1997 is used as a case study to highlight the characteristics of escalating crises. As in similar safety critical industries, these situations are unpredictable events that may require co-ordinated but flexible and creative responses from individuals and teams working in stressful conditions. Fundamental skill requirements for crisis management are situational awareness and decision making. This paper reviews the naturalistic decision making (NDM) model for insights into the nature of these skills and considers the optimal training regimes to cultivate them. The paper concludes with a review of the issues regarding the assessment of crisis management skills and current research into the determination of behavioural markers for measuring competence

    THE COLUMBUS GROUND SEGMENT – A PRECURSOR FOR FUTURE MANNED MISSIONS

    Get PDF
    In the beginning the space programs were self standing national activities, often in competition to other nations. Today space flight becomes more and more an international task. Complex space mission and deep space explorations are not longer to be stemmed by one agency or nation alone but are joint activities of several nations. The best example for such a joint (ad-) venture at the moment is the International Space Station ISS. Such international activities define complete new requirements for the supporting ground segments. The world-wide distribution of a ground segment is not any longer limited to a network of ground stations with the aim to provide a good coverage of the space craft. The coverage is sometimes – like for the ISSanyway ensured by using a relay satellite system instead. In addition to the enhanced down- and uplink methods a ground segment is aimed to connect the different centres of competence of all participating agencies/nations. From the space craft operations point of view such transnational ground segments are required to support distributed and shared operations in a predefined decision/commanding hierarchy. This has to be taken into account in the technical topology as well as for the operational set-up and teaming. Last not least increases the duration of missions, which requires a certain flexibility of the ground segment and long-term maintenance strategies for the ground segment with a special emphasis on nonintrusive replacements. The Russian space station MIR has been in the orbit for about 15 years, the ISS is currently targeted for 2020, to be for over 20 years in space

    Collaborative Engineering Environments. Two Examples of Process Improvement

    Get PDF
    Companies are recognising that innovative processes are determining factors in competitiveness. Two examples from projects in aircraft development describe the introduction of collaborative engineering environments as a way to improve engineering processes. A multi-disciplinary simulation environment integrates models from all disciplines involved in a common functional structure. Quick configuration for specific design problems and powerful feedback / visualisation capabilities enable engineering teams to concentrate on the integrated behaviour of the design. An engineering process management system allows engineering teams to work concurrently in tasks, following a defined flow of activities, applying tools on a shared database. Automated management of workspaces including data consistency enables engineering teams to concentrate on the design activities. The huge amount of experience in companies must be transformed for effective application in engineering processes. Compatible concepts, notations and implementation platforms make tangible knowledge like models and algorithms accessible. Computer-based design management makes knowledge on engineering processes and methods explicit

    Capturing, using, and managing quality assurance knowledge for shuttle post-MECO flight design

    Get PDF
    Ascent initialization values used by the Shuttle's onboard computer for nominal and abort mission scenarios are verified by a six degrees of freedom computer simulation. The procedure that the Ascent Post Main Engine Cutoff (Post-MECO) group uses to perform quality assurance (QA) of the simulation is time consuming. Also, the QA data, checklists and associated rationale, though known by the group members, is not sufficiently documented, hindering transfer of knowledge and problem resolution. A new QA procedure which retains the current high level of integrity while reducing the time required to perform QA is needed to support the increasing Shuttle flight rate. Documenting the knowledge is also needed to increase its availability for training and problem resolution. To meet these needs, a knowledge capture process, embedded into the group activities, was initiated to verify the existing QA checks, define new ones, and document all rationale. The resulting checks were automated in a conventional software program to achieve the desired standardization, integrity, and time reduction. A prototype electronic knowledge base was developed with Macintosh's HyperCard to serve as a knowledge capture tool and data storage

    A tool-mediated cognitive apprenticeship approach for a computer engineering course

    Get PDF
    Teaching database engineers involves a variety of learning activities. A strong focus is on practical problems that go beyond the acquisition of knowledge. Skills and experience are equally important. We propose a virtual apprenticeship model for the knowledge- and skillsoriented Web-based education of database students. We adapt the classical cognitive apprenticeship theory to the Web context utilising scaffolding and activity theory. The choice of educational media and the forms of student interaction with the media are central success criteria
    • 

    corecore