293 research outputs found

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Quality-Aware Broadcasting Strategies for Position Estimation in VANETs

    Full text link
    The dissemination of vehicle position data all over the network is a fundamental task in Vehicular Ad Hoc Network (VANET) operations, as applications often need to know the position of other vehicles over a large area. In such cases, inter-vehicular communications should be exploited to satisfy application requirements, although congestion control mechanisms are required to minimize the packet collision probability. In this work, we face the issue of achieving accurate vehicle position estimation and prediction in a VANET scenario. State of the art solutions to the problem try to broadcast the positioning information periodically, so that vehicles can ensure that the information their neighbors have about them is never older than the inter-transmission period. However, the rate of decay of the information is not deterministic in complex urban scenarios: the movements and maneuvers of vehicles can often be erratic and unpredictable, making old positioning information inaccurate or downright misleading. To address this problem, we propose to use the Quality of Information (QoI) as the decision factor for broadcasting. We implement a threshold-based strategy to distribute position information whenever the positioning error passes a reference value, thereby shifting the objective of the network to limiting the actual positioning error and guaranteeing quality across the VANET. The threshold-based strategy can reduce the network load by avoiding the transmission of redundant messages, as well as improving the overall positioning accuracy by more than 20% in realistic urban scenarios.Comment: 8 pages, 7 figures, 2 tables, accepted for presentation at European Wireless 201

    Energy-Optimum Throughput and Carrier Sensing Rate in CSMA-Based Wireless Networks

    Get PDF
    Cataloged from PDF version of article.We propose a model for the energy consumption of a node as a function of its throughput in a wireless CSMA network. We first model a single-hop network, and then a multi-hop network. We show that operating the CSMA network at a high throughput is energy inefficient since unsuccessful carrier sensing attempts increase the energy consumption per transmitted bit. Operating the network at a low throughput also causes energy inefficiency because of increased sleeping duration. Achieving a balance between these two opposite operating regimes, we derive the energy-optimum carrier-sensing rate and the energy-optimum throughput which maximize the number of transmitted bits for a given energy budget. For the single-hop case, we show that the energy-optimum total throughput increases as the number of nodes sharing the channel increases. For the multi-hop case, we show that energy-optimum throughput decreases as the degree of the conflict graph corresponding to the network increases. For both cases, the energy-optimum throughput reduces as the power required for carrier-sensing increases. The energy-optimum throughput is also shown to be substantially lower than the maximum throughput and the gap increases as the degree of the conflict graph increases for multi-hop networks. © 2002-2012 IEEE

    Detection in distributed sensor networks

    Get PDF
    This thesis describes detection and communication algorithms for distributed sensor networks.In the first part of the thesis, we investigate a new architecture for distributed binary hypothesis detection by employing a Collision Resolution Algorithm (CRA), where all local sensors share a common channel to communicate with the decision fusion center. This architecture is important in the design of sensor fields, where a large number of distributed sensors share a single "emergency" channel.In the second part of the thesis, we discuss an industrial application of such a distributed detection system, namely, the LonWorks control network. We concentrate on the predictive p-persistent CSMA protocol implemented in the MAC layer of LonWorks protocol, which was proposed by the Echelon Corporation in the 1980s. In order to model this algorithm, we expand the CRA model developed in the first part to analyze variable-length messages. Predictions of the model are compared to an OPNET simulator of LonWorks, and to resultsfrom a physical network.Finally, we propose a direction-of-arrival (DOA) algorithm for sensor networks. It employs an improved polynomial rooting method using unitary transformations.Ph.D., Electrical Engineering -- Drexel University, 200

    Optimization and Learning in Energy Efficient Cognitive Radio System

    Get PDF
    Energy efficiency and spectrum efficiency are two biggest concerns for wireless communication. The constrained power supply is always a bottleneck to the modern mobility communication system. Meanwhile, spectrum resource is extremely limited but seriously underutilized. Cognitive radio (CR) as a promising approach could alleviate the spectrum underutilization and increase the quality of service. In contrast to traditional wireless communication systems, a distinguishing feature of cognitive radio systems is that the cognitive radios, which are typically equipped with powerful computation machinery, are capable of sensing the spectrum environment and making intelligent decisions. Moreover, the cognitive radio systems differ from traditional wireless systems that they can adapt their operating parameters, i.e. transmission power, channel, modulation according to the surrounding radio environment to explore the opportunity. In this dissertation, the study is focused on the optimization and learning of energy efficiency in the cognitive radio system, which can be considered to better utilize both the energy and spectrum resources. Firstly, drowsy transmission, which produces optimized idle period patterns and selects the best sleep mode for each idle period between two packet transmissions through joint power management and transmission power control/rate selection, is introduced to cognitive radio transmitter. Both the optimal solution by dynamic programming and flexible solution by reinforcement learning are provided. Secondly, when cognitive radio system is benefited from the theoretically infinite but unsteady harvested energy, an innovative and flexible control framework mainly based on model predictive control is designed. The solution to combat the problems, such as the inaccurate model and myopic control policy introduced by MPC, is given. Last, after study the optimization problem for point-to-point communication, multi-objective reinforcement learning is applied to the cognitive radio network, an adaptable routing algorithm is proposed and implemented. Epidemic propagation is studied to further understand the learning process in the cognitive radio network

    An Adaptive Broadcasting Strategy for Efficient Dynamic Mapping in Vehicular Networks

    Get PDF
    In this work, we face the issue of achieving an efficient dynamic mapping in vehicular networking scenarios, i.e., obtaining an accurate estimate of the positions and trajectories of connected vehicles in a certain area. State-of-the-art solutions are based on the periodic broadcasting of the position information of the network nodes, with an inter-transmission period set by a congestion control scheme. However, the movements and maneuvers of vehicles can often be erratic, making transmitted data inaccurate or downright misleading. To address this problem, we propose to adopt a dynamic transmission scheme based on the actual positioning error, sending new data when the estimate overcomes a preset error threshold. Furthermore, the proposed method adapts the error threshold to the operational context according to an innovative congestion control algorithm that limits the collision probability among broadcast packet transmissions. This threshold-based strategy can reduce the network load by avoiding the transmission of redundant messages, and is shown to improve the overall positioning accuracy by more than 20% in realistic urban scenarios

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs
    corecore