93 research outputs found

    Light Extraction Efficiency of Nanostructured III-Nitride Light-Emitting Diodes

    Get PDF
    III-nitride materials have been extensively employed in a wide variety of applications attributed to their compact sizes, lower operating voltage, higher energy efficiency and longer lifetime. Although tremendous progress has been reported for III-nitride light-emitting diodes (LEDs), further enhancement in the external quantum effciency (ฮท_EQE), which depends upon internal quantum efficiency, injection efficiency and light extraction efficiency (ฮท_extraction), is essential in realizing next generation high-efficiency ultraviolet (UV) and visible LEDs. Several challenges such as charge separation issue, large threading dislocation density, large refractive index contrast between GaN and air, and anisotropic emission at high Al-composition AlGaN quantum wells in the deep-UV regime have been identified to obstruct the realization of high-brightness LEDs. As a result, novel LED designs and growth methods are highly demanded to address those issues. The objective of this dissertation is to investigate the enhancement of ฮท_extraction for various nanostructured III-nitride LEDs. In the first part, comprehensive studies on the polarization-dependent ฮท_extraction for AlGaN-based flip-chip UV LEDs with microdome-shaped patterned sapphire substrates (PSS) and AlGaN-based nanowire UV LEDs are presented. Results show that the microdome-shaped PSS acts as an extractor for transverse-magnetic (TM)-polarized light where up to ~11.2-times and ~2.6-times improvement in TM-polarized ฮท_extraction can be achieved for 230 nm and 280 nm flip-chip UV LEDs, while as a reflector that limits the extraction of transverse-electric (TE)-polarized light through the sapphire substrate. Analysis for 230 nm UV LEDs with nanowire structure shows up to ~48% TM-polarized ฮท_extraction and ~41% TE-polarized ฮท_extraction as compared to the conventional planar structure (~0.2% for TM-polarized ฮท_extraction and ~2% for TE-polarized ฮท_extraction). Plasmonic green LEDs with nanowire structure have also been investigated for enhancing the LED performance via surface plasmon polaritons. The analysis shows that both ฮท_extraction and Purcell factor for the investigated plasmonic nanowire LEDs are independent of the Ag cladding layer thickness (H_Ag), where a Purcell factor of ~80 and ฮท_extraction of ~65% can be achieved when H_Ag \u3e 60 nm. Nanosphere lithography and KOH-based wet etching process have been developed for the top-down fabrication of III-nitride nanowire LEDs. The second part of this dissertation focuses on alternative approaches to fabricate white LEDs. The integration of three-dimensional (3D) printing technology with LED fabrication is proposed as a straightforward and highly reproducible method to improve ฮท_extraction at the same time to achieve stable white color emission. The use of optically transparent acrylate-based photopolymer with a refractive index of ~1.5 as 3D printed lens on blue LED has exhibited 9% enhancement in the output power at current injection of 4 mA as compared to blue LED without 3D printed lens. Stable white color emission can be achieved with chromaticity coordinates around (0.27, 0.32) and correlated color temperature ~8900 K at current injection of 10 mA by mixing phosphor powder in the 3D printed lens. Novel LED structures employing ternary InGaN substrates are then discussed for realizing high-efficiency monolithic tunable white LEDs. Results show that large output power (~170 mW), high ฮท_EQE (~50%), chromaticity coordinates around (0.30, 0.28), and correlated color temperature ~8200 K can be achieved by engineering the band structures of the InGaN/InGaN LEDs on ternary InGaN substrates

    Nanooptics with surface plasmons and resonant nanoparticles

    Get PDF
    [no abstract

    Development of label-free colorimetric plasmonic sensor for biomedical applications

    Get PDF
    Biosensor technology is making strides due to its association with detection and quantification of a wide array of physiological profile makers, biomarkers, for the early detection of diseases. The newest technologies encompasses both qualitative as well as quantitative measurement of such markers. Colorimetric sensing, a method that enables the detection of target analytes via โ€˜color changeโ€™, lays the foundation of a user-friendly, economical and most of all, itโ€™s accessibility to draw inference for the detection of notorious critical conditions such as, carcinomas, and other significant environmental monitoring. Therefore, the impact of colorimetric sensing on the clinical detection of diseases at earlier stages can be enormous, provided the gap between the accuracy of lab-equipment to point-of-care testing tools is approximated. This thesis discusses the design, fabrication and characterization of a label-free plasmonic-based colorimetric sensor on a flexible plastic substrate consisting of periodic nano cups, also referred a nano Lycurgus cups, in an array covered with metal nanoparticles on the side walls and have sub-wavelength openings to provide refractive index sensing. It is also anticipated that the colorimetric sensor can be applied to point-of-care diagnostics by utilizing proper surface functionalization techniques, which is one of the current limiting factors. Chapter 1, is an overview on the existing biosensor technologies with the requirement of the next generation label free biosensor based on nanohole arrays. Chapter 2, describes the recent development of nanoscale Lycurgus cup Array (nanoLCA) with design, fabrication and characterization of the nanoplasmonic device. Chapter 3 starts with the discussion on the influence of adhesion layer on the optical properties of the nanoLCA device followed by layer by layer deposition of polyelectrolyte layers to identify the decay length of the device. Furthermore, this chapter also describes the deposition of different polymers using micro contact printing and compares the spectral results with the colorimetric properties of the device. Chapter 4 gives a demonstration of detection of drug bindings with cytochrome P450-2J2 using the nanoLCA device. Cytochrome P450-2J2 is the most common enzyme found in human heart and it is involved in drug metabolism. All bio-molecular detections are done using nanoLCA based on the shift in resonance peak wavelength with respect to change in the refractive index on the surrounding medium of the device. However, there is a constraint in using nanoLCA device to detect the lower concentration of bio-marker. Therefore, in Chapter 5, we have introduced 3D plasmonic nano cavity structure of the device in which an optical resonant cavity is combined with the plasmonic resonance in one device. This device is a modification of the previously studied nanoLCA device with additional layers, referred as multilayer nanoscale Lycurgus cup array (ML-nanoLCA device). The ML-nanoLCA device is based on a semiconductor material such as cadmium sulfide (CdS) layer, which has a high refractive index and very low extinction coefficient, sandwiched between two gold (Au) layers. This method allows intensity based bio-sensing with the help of a simple bandpass filter to allow certain wavelengths to be transmitted in the visible region at normal incidence illumination. The multilayer plasmonic substrate results in further improvement in the refractive-index sensing, DNA hybridization detection, protein-protein interaction, and detection of lower concentration of cancer biomarker, carcinoembryonic antigen (CEA) with higher sensitivity, which is discussed in chapter 6. The summary of the thesis with future outlook of the nanoplasmonic biosensor is discussed in chapter 7

    Development of novel series and parallel sensing system based on nanostructured surface enhanced Raman scattering substrate for biomedical application

    Get PDF
    With the advance of nanofabrication, the capability of nanoscale metallic structure fabrication opens a whole new study in nanoplasmonics, which is defined as the investigation of photon-electron interaction in the vicinity of nanoscale metallic structures. The strong oscillation of free electrons at the interface between metal and surrounding dielectric material caused by propagating surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) enables a variety of new applications in different areas, especially biological sensing techniques. One of the promising biological sensing applications by surface resonance polariton is surface enhanced Raman spectroscopy (SERS), which significantly reinforces the feeble signal of traditional Raman scattering by at least 104 times. It enables highly sensitive and precise molecule identification with the assistance of a SERS substrate. Until now, the design of new SERS substrate fabrication process is still thriving since no dominant design has emerged yet. The ideal process should be able to achieve both a high sensitivity and low cost device in a simple and reliable way. In this thesis two promising approaches for fabricating nanostructured SERS substrate are proposed: thermal dewetting technique and nanoimprint replica technique. These two techniques are demonstrated to show the capability of fabricating high performance SERS substrate in a reliable and cost efficient fashion. In addition, these two techniques have their own unique characteristics and can be integrated with other sensing techniques to build a serial or parallel sensing system. The breakthrough of a combination system with different sensing techniques overcomes the inherent limitations of SERS detection and leverages it to a whole new level of systematic sensing. The development of a sensing platform based on thermal dewetting technique is covered as the first half of this thesis. The process optimization, selection of substrate material, and improved deposition technique are discussed in detail. Interesting phenomena have been found including the influence of Raman enhancement on substrate material selection and hot-spot rich bimetallic nanostructures by physical vapor deposition on metallic seed array, which are barely discussed in past literature but significantly affect the performance of SERS substrate. The optimized bimetallic backplane assisted resonating nanoantenna (BARNA) SERS substrate is demonstrated with the enhancement factor (EF) of 5.8 ร— 108 with 4.7 % relative standard deviation. By serial combination with optical focusing from nanojet effect, the nanojet and surface enhanced Raman scattering (NASERS) are proved to provide more than three orders of enhancement and enable us to perform stable, nearly single molecule detection. The second part of this thesis includes the development of a parallel dual functional nano Lycurgus cup array (nanoLCA) plasmonic device fabricated by nanoimprint replica technique. The unique configuration of the periodic nanoscale cup-shaped substrate enables a novel hybrid resonance coupling between SPR from extraordinary (EOT) and LSPR from dense sidewall metal nanoparticles with only single deposition process. The sub-50nm dense sidewall metal nanoparticles lead to high SERS performance in solution based detection, by which most biological and chemical analyses are typically performed. The SERS EF was calculated as 2.8 ร— 107 in a solution based environment with 10.2 % RSD, which is so far the highest reported SERS enhancement achieved with similar periodic EOT devices. In addition, plasmonic colorimetric sensing can be achieved in the very same device and the sensitivity was calculated as 796 nm/RIU with the FOM of 12.7. It creates a unique complementary sensing platform with both rapid on-site colorimetric screening and follow-up precise Raman analysis for point of care and resource limited environment applications. The implementations of bifunctional sensing on opto-microfluidic and smartphone platforms are proposed and examined here as well

    Micro/Nano Structures and Systems

    Get PDF
    Micro/Nano Structures and Systems: Analysis, Design, Manufacturing, and Reliability is a comprehensive guide that explores the various aspects of micro- and nanostructures and systems. From analysis and design to manufacturing and reliability, this reprint provides a thorough understanding of the latest methods and techniques used in the field. With an emphasis on modern computational and analytical methods and their integration with experimental techniques, this reprint is an invaluable resource for researchers and engineers working in the field of micro- and nanosystems, including micromachines, additive manufacturing at the microscale, micro/nano-electromechanical systems, and more. Written by leading experts in the field, this reprint offers a complete understanding of the physical and mechanical behavior of micro- and nanostructures, making it an essential reference for professionals in this field

    ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์œผ๋กœ์˜ ์‘์šฉ์„ ์œ„ํ•œ 3D ํ”„๋ฆฐํŒ… ๊ธฐ๋ฐ˜ ๋งž์ถคํ˜• ๊ด‘ํ•™ ์š”์†Œ์˜ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ํ™์šฉํƒ.์ผ๋ฐ˜์ ์œผ๋กœ ์ œ์กฐ ๊ณต์ •์€ ์ ˆ์‚ญ ๋ฐฉ์‹๊ณผ ์ ์ธต ๋ฐฉ์‹์œผ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. ์ด ์ค‘์—์„œ ์ ์ธต ๋ฐฉ์‹ ๊ณต์ •์€ ์ €๋น„์šฉ ๋ฐ ๋‹จ์‹œ๊ฐ„์œผ๋กœ ๋ณต์žกํ•œ ํ˜•ํƒœ์˜ ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์–ด์„œ ์ด์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์™€ ๊ฐœ๋ฐœ์ด ๊พธ์ค€ํžˆ ์ง„ํ–‰๋˜์–ด์™”๋‹ค. ํŠนํžˆ 3D ํ”„๋ฆฐํŒ…์€ ์ ์ธต ๋ฐฉ์‹ ๊ณต์ • ์ค‘์—์„œ ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ, ๊ธฐ๊ณ„ ๋ถ€ํ’ˆ ๋ฐ ์ƒ์ฒด ๊ธฐ๊ด€ ์ œ์กฐ ๋“ฑ์˜ ๋ถ„์•ผ์—์„œ๋Š” ์ด๋ฏธ ์ƒ์šฉํ™”๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ „์ž ์†Œ์ž ๋ฐ ๊ด‘ํ•™ ์š”์†Œ ๋ถ„์•ผ์—์„œ์˜ 3D ํ”„๋ฆฐํŒ…์˜ ํ™œ์šฉ์€ ์—ฌ์ „ํžˆ ์—ฐ๊ตฌ ๊ฐœ๋ฐœ ๋˜๋Š” ์‹œ์ œํ’ˆ ์ œ์ž‘ ๋‹จ๊ณ„์— ๋จธ๋ฌด๋ฅด๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ, ์ปฌ๋Ÿฌ ํ•„ํ„ฐ ๋“ฑ์ด 3D ํ”„๋ฆฐํŒ…์œผ๋กœ ์‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ๊ฐ€๋Šฅ์„ฑ ์žˆ๋Š” ๊ด‘ํ•™ ์š”์†Œ๋กœ์„œ ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์— ๋„๋ฆฌ ์‚ฌ์šฉ๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋˜์ง€๋งŒ ์—ฌ์ „ํžˆ ์ƒ์šฉํ™”๋ฅผ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰ ์ค‘์ด๋‹ค. ๋˜ํ•œ 3D ํ”„๋ฆฐํŒ…์„ ์ด์šฉํ•œ ๊ด‘ํ•™ ์š”์†Œ์˜ ์ œ์ž‘์€ ์†Œ์žฌ, ๊ธธ์ด ์Šค์ผ€์ผ, ํ˜•์ƒ ๋ฐ ์‘์šฉ ๋ฐฉ์•ˆ ๋“ฑ์—์„œ๋„ ์ œํ•œ์ด ๋งŽ์€ ์ƒํ™ฉ์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์—์„œ์˜ 3D ํ”„๋ฆฐํŒ… ๋œ ๊ด‘ํ•™ ์š”์†Œ์˜ ์œ ์šฉ์„ฑ์„ ํ™•์žฅํ•ด์•ผ ํ•˜๋ฉฐ, ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์„ธ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•ด์•ผ ํ•œ๋‹ค. ์ฒซ์งธ, ๋‹ค์–‘ํ•œ ๋ฐฉ์‹์˜ 3D ํ”„๋ฆฐํŒ… ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋งˆ์ดํฌ๋กœ๋ฏธํ„ฐ์—์„œ ์„ผํ‹ฐ๋ฏธํ„ฐ๊นŒ์ง€ ๊ด‘๋ฒ”์œ„์˜ ๊ธธ์ด ์Šค์ผ€์ผ์„ ๊ฐ€์ง€๋Š” ๊ตฌ์กฐ๋ฌผ์˜ ์ œ์ž‘์ด ๊ฐ€๋Šฅํ•ด์•ผ ํ•œ๋‹ค. ๋‘˜์งธ, ์ž„์˜์˜ ๊ณก๋ฉด, ๊ณ„์ธต์  ๊ตฌ์กฐ ๋“ฑ ๋ณต์žกํ•œ ํ˜•์ƒ์˜ ๊ตฌ์กฐ๋ฌผ์„ ์‰ฝ๊ฒŒ ์ œ์ž‘ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ์…‹์งธ, ๋‹จ๋‹จํ•œ ์†Œ์žฌ ๋Œ€์‹  ํƒ„์„ฑ์ฒด์™€ ๊ฐ™์€ ์†Œํ”„ํŠธ ์†Œ์žฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ด‘ํ•™์ ์ธ ๊ธฐ๋Šฅ์„ ์šฉ์ดํ•˜๊ฒŒ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋™๊ธฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์œผ๋กœ์˜ ์‘์šฉ์„ ์œ„ํ•œ 3D ํ”„๋ฆฐํŒ… ๊ธฐ๋ฐ˜ ๋งž์ถคํ˜• ๊ด‘ํ•™ ์š”์†Œ์˜ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ๋ณด๊ณ ํ•œ๋‹ค. 3D ํ”„๋ฆฐํŒ… ๊ธฐ๋ฐ˜ ๊ด‘ํ•™ ์š”์†Œ๋ฅผ ๋งคํฌ๋กœ ์Šค์ผ€์ผ, ๋งˆ์ดํฌ๋กœ ์Šค์ผ€์ผ ๊ทธ๋ฆฌ๊ณ  ๋งคํฌ๋กœ ๋ฐ ๋งˆ์ดํฌ๋กœ ์Šค์ผ€์ผ์ด ํ˜ผํ•ฉ๋œ ๊ณ„์ธต์  ๊ตฌ์กฐ ๋“ฑ ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ  ๊ฐ๊ฐ์— ๋Œ€ํ•œ ์‘์šฉ ๋ถ„์•ผ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋งคํฌ๋กœ ์Šค์ผ€์ผ์˜ ๊ด‘ํ•™ ์š”์†Œ๋กœ๋Š” ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ์š”์†Œ์ธ ๋ Œ์ฆˆ์™€ ๊ฑฐ์šธ์„ ์„ ํƒํ•œ๋‹ค. ๋ Œ์ฆˆ๋Š” ๊ณต์••์‹ ๋””์ŠคํŽœ์‹ฑ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์‹ค๋ฆฐ๋“œ๋ฆฌ์ปฌ ์Œ ํ˜•ํƒœ๋กœ ์ œ์ž‘๋˜์—ˆ์œผ๋ฉฐ, ์‹ฌ๋ฆฌ์Šค ๋ชจ๋“ˆ๋Ÿฌ ํ‰ํŒ์‹ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ตฌํ˜„์„ ์œ„ํ•ด ์ ์šฉ๋œ๋‹ค. ๋˜ํ•œ ์šฉ์œต ์ ์ธต ๋ฐฉ์‹์˜ 3D ํ”„๋ฆฐํŒ…์œผ๋กœ ๋งŒ๋“ค์–ด์ง„ ๋ชฐ๋“œ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฑฐ์šธ์„ ์ œ์ž‘ํ•˜๊ณ , ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹ฌ๋ฆฌ์Šค ๋ชจ๋“ˆ๋Ÿฌ ์ปค๋ธŒ๋“œ ์—ฃ์ง€ ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ๊ตฌํ˜„ํ•œ๋‹ค. ์ด์™€ ๊ฐ™์ด ๋ชจ๋“ˆ๋Ÿฌ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ด์Œ์ƒˆ ๋ถ€๋ถ„์— 3D ํ”„๋ฆฐํŒ…์œผ๋กœ ์ œ์ž‘๋œ ๋ Œ์ฆˆ ๋˜๋Š” ๊ฑฐ์šธ์„ ๋ถ€์ฐฉํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ํ™”๋ฉด์„ ์‹ฌ๋ฆฌ์Šค๋กœ ํ™•์žฅํ•˜๋Š” ๊ธฐ์ˆ ์„ ์ œ์‹œํ•˜๊ณ , ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ๋””์Šคํ”Œ๋ ˆ์ด์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋งˆ์ดํฌ๋กœ ์Šค์ผ€์ผ์˜ ๊ด‘ํ•™ ์š”์†Œ๋กœ๋Š” ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ์—์„œ ์ƒ‰ ๋ณ€ํ™˜๊ณผ ๊ด‘ ์ถ”์ถœ ๊ธฐ๋Šฅ์„ ๋™์‹œ์— ๋‚˜ํƒ€๋‚ด๋Š” ์ƒ‰ ๋ณ€ํ™˜ ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ๋ฅผ ์„ ํƒํ•œ๋‹ค. ์–‘์ž ์ /๊ด‘ ๊ฒฝํ™”์„ฑ ๊ณ ๋ถ„์ž ๋ณตํ•ฉ์ฒด์˜ ์ „๊ธฐ์ˆ˜๋ ฅํ•™์  ํ”„๋ฆฐํŒ…์„ ํ†ตํ•ด ์–‘์ž ์ ์ด ๋‚ด์žฅ๋œ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์ƒ‰ ๋ณ€ํ™˜ ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ๋ฅผ ์ œ์ž‘ํ•˜๋ฉฐ, ์ด๋ฅผ ์ฒญ์ƒ‰ ๋งˆ์ดํฌ๋กœ ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ ์–ด๋ ˆ์ด์˜ ๋ฐœ๊ด‘๋ถ€ ์ƒ์— ์ ์šฉํ•˜์—ฌ ํ’€ ์ปฌ๋Ÿฌ ๋งˆ์ดํฌ๋กœ ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ ๋””์Šคํ”Œ๋ ˆ์ด๋กœ์˜ ์‘์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋งคํฌ๋กœ ๋ฐ ๋งˆ์ดํฌ๋กœ ์Šค์ผ€์ผ์ด ํ˜ผํ•ฉ๋œ ๊ณ„์ธต์  ๊ตฌ์กฐ์˜ ๊ด‘ํ•™ ์š”์†Œ๋กœ์„œ ๋””์ŠคํŽœ์‹ฑ ๋ฐ ๊ฑด์‹ ๋Ÿฌ๋น™ ๊ณผ์ •์˜ ์กฐํ•ฉ์œผ๋กœ ์ œ์ž‘๋œ ๊ฒน๋ˆˆ ํ˜•ํƒœ๋ฅผ ๋ชจ์‚ฌํ•œ ๋ Œ์ฆˆ ๊ตฌ์กฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋ฐ˜๊ตฌ ํ˜•ํƒœ์˜ ๋งคํฌ๋กœ ๋ Œ์ฆˆ๋ฅผ ๋””์ŠคํŽœ์‹ฑ์œผ๋กœ ํ˜•์„ฑํ•˜๊ณ , ๋งคํฌ๋กœ ๋ Œ์ฆˆ์˜ ๊ณก๋ฉด ์ƒ์— ๋‹จ์ธต์˜ ๋งˆ์ดํฌ๋กœ ์ž…์ž์˜ ๋ฐฐ์—ด์„ ์–ป๊ธฐ ์œ„ํ•ด ๊ฑด์‹ ๋Ÿฌ๋น™ ๊ณต์ •์„ ์ง„ํ–‰ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์œผ๋กœ ํ˜•์„ฑ๋œ ๊ณ„์ธต์  ๊ตฌ์กฐ๊ฐ€ ์†Œํ”„ํŠธํ•œ ์†Œ์žฌ๋กœ ๋ณต์ œ๋˜์–ด์„œ ์‹ ์ถ•์„ฑ์„ ๊ฐ€์ง€๋Š” ๊ฒน๋ˆˆ ํ˜•ํƒœ ๋ชจ์‚ฌ ๊ตฌ์กฐ๊ฐ€ ์™„์„ฑ๋œ๋‹ค. ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ ์–ด๋ ˆ์ด๋Š” ๋งคํฌ๋กœ ๋ Œ์ฆˆ์˜ ํ‘œ๋ฉด์„ ๋”ฐ๋ผ ํ˜•์„ฑ๋˜๊ณ  ๋ฆฌ์ง€๋“œ ์•„์ผ๋žœ๋“œ๋กœ ์—ญํ• ์„ ํ•˜์—ฌ, ์ „์ฒด ๊ณ„์ธต์  ๊ตฌ์กฐ์— ๊ธฐ๊ณ„์  ๋ณ€ํ˜•์ด ๊ฐ€ํ•ด์ ธ ๋งคํฌ๋กœ ๋ Œ์ฆˆ์˜ ๋ชจ์–‘์ด ๋ณ€ํ˜•๋˜์–ด๋„ ๋งˆ์ดํฌ๋กœ ๋ Œ์ฆˆ๋Š” ํ˜•์ƒ๊ณผ ํ•ด์ƒ๋„, ์ดˆ์  ๊ฑฐ๋ฆฌ ๋“ฑ์˜ ๊ด‘ํ•™์  ํŠน์„ฑ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์€ 3D ํ”„๋ฆฐํŒ…์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์™€ ์Šค์ผ€์ผ์˜ ๊ด‘ํ•™ ์š”์†Œ๋ฅผ ์ œ์ž‘ํ•˜๊ณ  ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์œผ๋กœ์˜ ์—ฌ๋Ÿฌ ์‘์šฉ์„ ๋ณด์—ฌ์คŒ์œผ๋กœ์„œ ์•ž์œผ๋กœ์˜ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ๋ฐ ๊ฐœ๋ฐœ ๋ฐฉํ–ฅ์„ฑ์„ ์ œ์‹œํ•˜๋Š” ๊ฒƒ์„ ์ฃผ์š” ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. 3D ํ”„๋ฆฐํŒ… ์„ค๋น„์˜ ๋‹จ๊ฐ€๊ฐ€ ๋‚ฎ์•„์ง€๊ณ  ์ •๋ฐ€๋„ ๋ฐ ํ•ด์ƒ๋„๊ฐ€ ๋†’์•„์ง€๋Š” ์ถ”์„ธ์— ๋”ฐ๋ผ, ๊ด‘ํ•™ ์š”์†Œ๋ฅผ ์‰ฝ๊ฒŒ ๋งŒ๋“ค๊ณ  ์‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋งž์ถคํ˜• ๊ด‘ํ•™ ๋˜๋Š” ์Šค์Šค๋กœ ๊ตฌํ˜„ํ•˜๋Š” ๊ด‘ํ•™ ๋ถ„์•ผ๊ฐ€ ๋ณ€ํ˜• ๊ฐ€๋Šฅํ•˜๊ณ  ๋ฉ€ํ‹ฐ ์Šค์ผ€์ผ์˜ ๊ด‘ํ•™๊ณ„๋กœ ์ ์ฐจ ํ™•๋Œ€๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ๊ถ๊ทน์ ์œผ๋กœ๋Š” ์ฐจ์„ธ๋Œ€ ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์— ํ•„์š”ํ•œ ๊ด‘ํ•™ ์š”์†Œ๋ฅผ ์œ„ํ•œ ๊ธฐ์ˆ ์˜ ์ €๋ณ€์„ ๋„“ํžˆ๊ณ , ์ด๋ฅผ ์‚ฐ์—… ์ „๋ฐ˜์— ์‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ๋งˆ๋ จํ•˜๊ณ ์ž ํ•œ๋‹ค.Generally, the manufacturing process is divided into the subtractive (top-down) type and additive type (bottom-up). Among them, the additive manufacturing process has attracted a lot of attention because it can manufacture products with complex shapes in a low-cost and short-time process. In particular, three-dimensional (3D) printing is a representative method, which has already been commercialized in the field of mechanical components and biomedical organ. However, it remains in the research and development step in the field of electronic devices and optical components. Especially, although 3D printed optical components including microlens and color filter are expected to be widely used in display and imaging systems, it is still under investigation for commercialized products, and there are limitations in terms of materials, length scale, shape, and practical applications of components. Therefore, to overcome these issues, it is required for investigating and expanding the potential usefulness for 3D printed optical components in display and imaging systems to achieve better performance, productivity, and usability in three aspects. First, it should be possible to manufacture structures with a wide range of length scales from micrometer to centimeter through various 3D printing methods. Second, complex shapes such as free-from curved surfaces and hierarchical structures should be easily fabricated. Third, it is necessary to add functionality by manufacturing structures in which tunable functions are introduced using soft materials like an elastomer. Based on the above motivations, 3D printing-based customized optical components for display and imaging system applications are introduced in this dissertation. 3D printed optical components are classified into three types and their applications are showed to verify the scalability of 3D printing: macro-scale, microscale, and hierarchical macro/micro-scale. As macro-scale printed optical components, lens and mirror which are the most basic optical components are selected. The lens is fabricated by a pneumatic-type dispensing method with the form of a cylindrical pair and adopted for demonstration of seamless modular flat panel display. Besides, a seamless modular curved-edge display is also demonstrated with a mirror, which is fabricated from fused deposition modeling (FDM)-type 3D printed mold. By simply attaching a printed lens or mirror onto the seam of the modular display, it is possible to secure seamless screen expansion technology with the various form factor of the display panel. In the case of micro-scale printed optical components, the color-convertible microlens is chosen, which act as a color converter and light extractor simultaneously in a light-emitting diode (LED). By electrohydrodynamic (EHD) printing of quantum dot (QD)/photocurable polymer composite, QD-embedded hemispherical lens shape structures with various sizes are fabricated by adjusting printing conditions. Furthermore, it is applied to a blue micro-LED array for full-color micro-LED display applications. Finally, a tunable bio-inspired compound (BIC) eyes structure with a combination of dispensing and a dry-phase rubbing process is suggested as a hierarchical macro/micro-scale printed optical components. A hemispherical macrolens is formed by the dispensing method, followed by a dry-phase rubbing process for arranging micro particles in monolayer onto the curved surface of the macrolens. This hierarchical structure is replicated in soft materials, which have intrinsic stretchability. Microlens array is formed on the surface of the macrolens and acts as a rigid island, thereby maintaining lens shape, resolution, and focal length even though the mechanical strain is applied to overall hierarchical structures and the shape of the macrolens is changed. The primary purposes of this dissertation are to introduce new concepts of the enabling technologies for 3D printed optical components and to shed new light on them. Optical components can be easily made as 3D printing equipment becomes cheaper and more precise, so the field of Consumer optics or Do it yourself (DIY) optics will be gradually expanded on deformable and multi-scale optics. It is expected that this dissertation can contribute to providing a guideline for utilizing and customizing 3D printed optical components in next-generation display and imaging system applications.Chapter 1. Introduction 1 1.1. Manufacturing Process 1 1.2. Additive Manufacturing 4 1.3. Printed Optical Components 8 1.4. Motivation and Organization of Dissertation 11 Chapter 2. Macro-scale Printed Optical Components 15 2.1. Introduction 15 2.2. Seamless Modular Flat Display with Printed Lens 20 2.2.1. Main Concept 20 2.2.2. Experimental Section 23 2.2.3. Results and Discussion 26 2.3. Seamless Modular Curved-edge Display with Printed Mirror 32 2.3.1. Main Concept 32 2.3.2. Experimental Section 33 2.3.3. Results and Discussion 36 2.4. Conclusion 46 Chapter 3. Micro-scale Printed Optical Components 47 3.1. Introduction 47 3.2. Full-color Micro-LED Array with Printed Color-convertible Microlens 52 3.2.1. Main Concept 52 3.2.2. Experimental Section 54 3.2.3. Results and Discussion 57 3.3. Conclusion 65 Chapter 4. Hierarchical Macro/Micro-scale Printed Optical Components 66 4.1. Introduction 66 4.2. Tunable Bio-inspired Compound Eye with Printing and Dry-phase Rubbing Process 69 4.2.1. Main Concept 69 4.2.2. Experimental Section 71 4.2.3. Results and Discussion 73 4.3. Conclusion 79 Chapter 5. Conclusion 80 5.1. Summary 80 5.2. Limitations and Suggestions for Future Researches 83 References 88 Abstract in Korean (๊ตญ๋ฌธ ์ดˆ๋ก) 107Docto

    Nanofabrication

    Get PDF
    We face many challenges in the 21st century, such as sustainably meeting the world's growing demand for energy and consumer goods. I believe that new developments in science and technology will help solve many of these problems. Nanofabrication is one of the keys to the development of novel materials, devices and systems. Precise control of nanomaterials, nanostructures, nanodevices and their performances is essential for future innovations in technology. The book "Nanofabrication" provides the latest research developments in nanofabrication of organic and inorganic materials, biomaterials and hybrid materials. I hope that "Nanofabrication" will contribute to creating a brighter future for the next generation

    Writing 3D nanomagnets using focused electron beams

    Get PDF
    Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures

    Optically Induced Nanostructures

    Get PDF
    Nanostructuring of materials is a task at the heart of many modern disciplines in mechanical engineering, as well as optics, electronics, and the life sciences. This book includes an introduction to the relevant nonlinear optical processes associated with very short laser pulses for the generation of structures far below the classical optical diffraction limit of about 200 nanometers as well as coverage of state-of-the-art technical and biomedical applications. These applications include silicon and glass wafer processing, production of nanowires, laser transfection and cell reprogramming, optical cleaning, surface treatments of implants, nanowires, 3D nanoprinting, STED lithography, friction modification, and integrated optics. The book highlights also the use of modern femtosecond laser microscopes and nanoscopes as novel nanoprocessing tools
    • โ€ฆ
    corecore