1,347 research outputs found

    Optimal boarding method for airline passengers

    Get PDF
    Using a Markov Chain Monte Carlo optimization algorithm and a computer simulation, I find the passenger ordering which minimizes the time required to board the passengers onto an airplane. The model that I employ assumes that the time that a passenger requires to load his or her luggage is the dominant contribution to the time needed to completely fill the aircraft. The optimal boarding strategy may reduce the time required to board and airplane by over a factor of four and possibly more depending upon the dimensions of the aircraft. In addition, knowledge of the optimal boarding procedure can inform decisions regarding changes to methods that are employed by a particular carrier. I explore some of the salient features of the optimal boarding method and discuss practical modifications to the optimal. Finally, I mention some of the benefits that could come from implementing an improved passenger boarding scheme.Comment: Accepted for publication in the Journal of Air Transport Management. This study was motivated by an experience that occurred while traveling to a conference. Version 1: 15 pages, 7 figures--likely to be of more technical interest. Version 2: 14 pages, 6 figures--more complete bibliography and some additional commentar

    A statistical mechanics model for free-for-all airplane passenger boarding

    Get PDF
    I present and discuss a model for the free-for-all passenger boarding which is employed by some discount air carriers. The model is based on the principles of statistical mechanics where each seat in the aircraft has an associated energy which reflects the preferences of the population of air travelers. As each passenger enters the airplane they select their seats using Boltzmann statistics, proceed to that location, load their luggage, sit down, and the partition function seen by remaining passengers is modified to reflect this fact. I discuss the various model parameters and make qualitative comparisons of this passenger boarding model with models which involve assigned seats. This model can also be used to predict the probability that certain seats will be occupied at different times during the boarding process. These results may be of value to industry professionals as a useful description of this boarding method. However, it also has significant value as a pedagogical tool since it is a relatively unusual application of undergraduate level physics and it describes a situation with which many students and faculty may be familiar.Comment: version 1: 4 pages 2 figures version 2: 7 pages with 5 figure

    Data-driven modeling of systemic delay propagation under severe meteorological conditions

    Get PDF
    The upsetting consequences of weather conditions are well known to any person involved in air transportation. Still the quantification of how these disturbances affect delay propagation and the effectiveness of managers and pilots interventions to prevent possible large-scale system failures needs further attention. In this work, we employ an agent-based data-driven model developed using real flight performance registers for the entire US airport network and focus on the events occurring on October 27 2010 in the United States. A major storm complex that was later called the 2010 Superstorm took place that day. Our model correctly reproduces the evolution of the delay-spreading dynamics. By considering different intervention measures, we can even improve the model predictions getting closer to the real delay data. Our model can thus be of help to managers as a tool to assess different intervention measures in order to diminish the impact of disruptive conditions in the air transport system.Comment: 9 pages, 5 figures. Tenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2013

    A combined optimization-simulation approach for modified outside-in boarding under COVID-19 regulations including limited baggage compartment capacities

    Full text link
    The timely handling of passengers is critical to efficient airport and airline operations. The pandemic requirements mandate adapted process designs and handling procedures to maintain and improve operational performance. Passenger activities in the confined aircraft cabin must be evaluated to potential virus transmission, and boarding procedures should be designed to minimize the negative impact on passengers and operations. In our approach, we generate an optimized seat allocation that considers passengers' physical activities when they store their hand luggage items in the overhead compartment. We proposed a mixed-integer programming formulation including the concept of shedding rates to determine and minimize the risk of virus transmission by solving the NP-hard seat assignment problem. We are improving the already efficient outside-in boarding, where passengers in the window seat board first and passengers in the aisle seat board last, taking into account COVID-19 regulations and the limited capacity of overhead compartments. To demonstrate and evaluate the improvements achieved in aircraft boarding, a stochastic agent-based model is used in which three operational scenarios with seat occupancy of 50\%, 66\%, and 80\% are implemented. With our optimization approach, the average boarding time and the transmission risk are significantly reduced already for the general case, i.e., when no specific boarding order is specified (random boarding). If the already efficient outside-in boarding is used as a reference, the boarding time can be reduced by more than 30\% by applying our approach, while keeping the transmission risk at the lowest level
    corecore