589 research outputs found

    The impacts of timing constraints on virtual channels multiplexing in interconnect networks

    Get PDF
    Interconnect networks employing wormhole-switching play a critical role in shared memory multiprocessor systems-on-chip (MPSoC) designs, multicomputer systems and system area networks. Virtual channels greatly improve the performance of wormhole-switched networks because they reduce blocking by acting as "bypass" lanes for non-blocked messages. Capturing the effects of virtual channel multiplexing has always been a crucial issue for any analytical model proposed for wormhole-switched networks. Dally has developed a model to investigate the behaviour of this multiplexing which have been widely employed in the subsequent analytical models of most routing algorithms suggested in the literature. It is indispensable to modify Dally's model in order to evaluate the performance of channel multiplexing in more general networks where restrictions such as timing constraints of input arrivals and finite buffer size of queues are common. In this paper we consider timing constraints of input arrivals to investigate the virtual channel multiplexing problem inherent in most current networks. The analysis that we propose is completely general and therefore can be used with any interconnect networks employing virtual channels. The validity of the proposed equations has been verified through simulation experiments under different working conditions

    On the performance of routing algorithms in wormhole-switched multicomputer networks

    Get PDF
    This paper presents a comparative performance study of adaptive and deterministic routing algorithms in wormhole-switched hypercubes and investigates the performance vicissitudes of these routing schemes under a variety of network operating conditions. Despite the previously reported results, our results show that the adaptive routing does not consistently outperform the deterministic routing even for high dimensional networks. In fact, it appears that the superiority of adaptive routing is highly dependent to the broadcast traffic rate generated at each node and it begins to deteriorate by growing the broadcast rate of generated message

    A case study for NoC based homogeneous MPSoC architectures

    Get PDF
    The many-core design paradigm requires flexible and modular hardware and software components to provide the required scalability to next-generation on-chip multiprocessor architectures. A multidisciplinary approach is necessary to consider all the interactions between the different components of the design. In this paper, a complete design methodology that tackles at once the aspects of system level modeling, hardware architecture, and programming model has been successfully used for the implementation of a multiprocessor network-on-chip (NoC)-based system, the NoCRay graphic accelerator. The design, based on 16 processors, after prototyping with field-programmable gate array (FPGA), has been laid out in 90-nm technology. Post-layout results show very low power, area, as well as 500 MHz of clock frequency. Results show that an array of small and simple processors outperform a single high-end general purpose processo

    Analytical modelling of hot-spot traffic in deterministically-routed k-ary n-cubes

    Get PDF
    Many research studies have proposed analytical models to evaluate the performance of k-ary n-cubes with deterministic wormhole routing. Such models however have so far been confined to uniform traffic distributions. There has been hardly any model proposed that deal with non-uniform traffic distributions that could arise due to, for instance, the presence of hot-spots in the network. This paper proposes the first analytical model to predict message latency in k-ary n-cubes with deterministic routing in the presence of hot-spots. The validity of the model is demonstrated by comparing analytical results with those obtained through extensive simulation experiments

    The Effect Of Hot Spots On The Performance Of Mesh--Based Networks

    Get PDF
    Direct network performance is affected by different design parameters which include number of virtual channels, number of ports, routing algorithm, switching technique, deadlock handling technique, packet size, and buffer size. Another factor that affects network performance is the traffic pattern. In this thesis, we study the effect of hotspot traffic on system performance. Specifically, we study the effect of hotspot factor, hotspot number, and hot spot location on the performance of mesh-based networks. Simulations are run on two network topologies, both the mesh and torus. We pay more attention to meshes because they are widely used in commercial machines. Comparisons between oblivious wormhole switching and chaotic packet switching are reported. Overall packet switching proved to be more efficient in terms of throughput when compared to wormhole switching. In the case of uniform random traffic, it is shown that the differences between chaotic and oblivious routing are indistinguishable. Networks with low number of hotspots show better performance. As the number of hotspots increases network latency tends to increase. It is shown that when the hotspot factor increases, performance of packet switching is better than that of wormhole switching. It is also shown that the location of hotspots affects network performance particularly with the oblivious routers since their achieved latencies proved to be more vulnerable to changes in the hotspot location. It is also shown that the smaller the size of the network the earlier network saturation occurs. Further, it is shown that the chaos router’s adaptivity is useful in this case. Finally, for tori, performance is not greatly affected by hotspot presence. This is mostly due to the symmetric nature of tori

    Software-based fault-tolerant routing algorithm in multidimensional networks

    Get PDF
    Massively parallel computing systems are being built with hundreds or thousands of components such as nodes, links, memories, and connectors. The failure of a component in such systems will not only reduce the computational power but also alter the network's topology. The software-based fault-tolerant routing algorithm is a popular routing to achieve fault-tolerance capability in networks. This algorithm is initially proposed only for two dimensional networks (Suh et al., 2000). Since, higher dimensional networks have been widely employed in many contemporary massively parallel systems; this paper proposes an approach to extend this routing scheme to these indispensable higher dimensional networks. Deadlock and livelock freedom and the performance of presented algorithm, have been investigated for networks with different dimensionality and various fault regions. Furthermore, performance results have been presented through simulation experiments
    • …
    corecore