3,995 research outputs found

    COACHES Cooperative Autonomous Robots in Complex and Human Populated Environments

    Get PDF
    Public spaces in large cities are increasingly becoming complex and unwelcoming environments. Public spaces progressively become more hostile and unpleasant to use because of the overcrowding and complex information in signboards. It is in the interest of cities to make their public spaces easier to use, friendlier to visitors and safer to increasing elderly population and to citizens with disabilities. Meanwhile, we observe, in the last decade a tremendous progress in the development of robots in dynamic, complex and uncertain environments. The new challenge for the near future is to deploy a network of robots in public spaces to accomplish services that can help humans. Inspired by the aforementioned challenges, COACHES project addresses fundamental issues related to the design of a robust system of self-directed autonomous robots with high-level skills of environment modelling and scene understanding, distributed autonomous decision-making, short-term interacting with humans and robust and safe navigation in overcrowding spaces. To this end, COACHES will provide an integrated solution to new challenges on: (1) a knowledge-based representation of the environment, (2) human activities and needs estimation using Markov and Bayesian techniques, (3) distributed decision-making under uncertainty to collectively plan activities of assistance, guidance and delivery tasks using Decentralized Partially Observable Markov Decision Processes with efficient algorithms to improve their scalability and (4) a multi-modal and short-term human-robot interaction to exchange information and requests. COACHES project will provide a modular architecture to be integrated in real robots. We deploy COACHES at Caen city in a mall called “Rive de l’orne”. COACHES is a cooperative system consisting of ?xed cameras and the mobile robots. The ?xed cameras can do object detection, tracking and abnormal events detection (objects or behaviour). The robots combine these information with the ones perceived via their own sensor, to provide information through its multi-modal interface, guide people to their destinations, show tramway stations and transport goods for elderly people, etc.... The COACHES robots will use different modalities (speech and displayed information) to interact with the mall visitors, shopkeepers and mall managers. The project has enlisted an important an end-user (Caen la mer) providing the scenarios where the COACHES robots and systems will be deployed, and gather together universities with complementary competences from cognitive systems (SU), robust image/video processing (VUB, UNICAEN), and semantic scene analysis and understanding (VUB), Collective decision-making using decentralized partially observable Markov Decision Processes and multi-agent planning (UNICAEN, Sapienza), multi-modal and short-term human-robot interaction (Sapienza, UNICAEN

    Adaptive modality selection algorithm in robot-assisted cognitive training

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Interaction of socially assistive robots with users is based on social cues coming from different interaction modalities, such as speech or gestures. However, using all modalities at all times may be inefficient as it can overload the user with redundant information and increase the task completion time. Additionally, users may favor certain modalities over the other as a result of their disability or personal preference. In this paper, we propose an Adaptive Modality Selection (AMS) algorithm that chooses modalities depending on the state of the user and the environment, as well as user preferences. The variables that describe the environment and the user state are defined as resources, and we posit that modalities are successful if certain resources possess specific values during their use. Besides the resources, the proposed algorithm takes into account user preferences which it learns while interacting with users. We tested our algorithm in simulations, and we implemented it on a robotic system that provides cognitive training, specifically Sequential memory exercises. Experimental results show that it is possible to use only a subset of available modalities without compromising the interaction. Moreover, we see a trend for users to perform better when interacting with a system with implemented AMS algorithm.Peer ReviewedPostprint (author's final draft

    Non-overlapping dual camera fall detection using the NAO humanoid robot

    Get PDF
    With an aging population and a greater desire for independence, the dangers of falling incidents in the elderly have become particularly pronounced. In light of this, several technologies have been developed with the aim of preventing or monitoring falls. Failing to strike the balance between several factors including reliability, complexity and invasion of privacy has seen prohibitive in the uptake of these systems. Some systems rely on cameras being mounted in all rooms of a user's home while others require being worn 24 hours a day. This paper explores a system using a humanoid NAO robot with dual vertically mounted cameras to perform the task of fall detection

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    An Intervening Ethical Governor for a Robot Mediator in Patient-Caregiver Relationships

    Get PDF
    © Springer International Publishing AG 2015DOI: 10.1007/978-3-319-46667-5_6Patients with Parkinson’s disease (PD) experience challenges when interacting with caregivers due to their declining control over their musculature. To remedy those challenges, a robot mediator can be used to assist in the relationship between PD patients and their caregivers. In this context, a variety of ethical issues can arise. To overcome one issue in particular, providing therapeutic robots with a robot architecture that can ensure patients’ and caregivers’ dignity is of potential value. In this paper, we describe an intervening ethical governor for a robot that enables it to ethically intervene, both to maintain effective patient–caregiver relationships and prevent the loss of dignity
    • …
    corecore