486 research outputs found

    Automating the packing heuristic design process with genetic programming

    Get PDF
    The literature shows that one-, two-, and three-dimensional bin packing and knapsack packing are difficult problems in operational research. Many techniques, including exact, heuristic, and metaheuristic approaches, have been investigated to solve these problems and it is often not clear which method to use when presented with a new instance. This paper presents an approach which is motivated by the goal of building computer systems which can design heuristic methods. The overall aim is to explore the possibilities for automating the heuristic design process. We present a genetic programming system to automatically generate a good quality heuristic for each instance. It is not necessary to change the methodology depending on the problem type (one-, two-, or three-dimensional knapsack and bin packing problems), and it therefore has a level of generality unmatched by other systems in the literature. We carry out an extensive suite of experiments and compare with the best human designed heuristics in the literature. Note that our heuristic design methodology uses the same parameters for all the experiments. The contribution of this paper is to present a more general packing methodology than those currently available, and to show that, by using this methodology, it is possible for a computer system to design heuristics which are competitive with the human designed heuristics from the literature. This represents the first packing algorithm in the literature able to claim human competitive results in such a wide variety of packing domains

    A Hybrid Demon Algorithm for the Two-Dimensional Orthogonal Strip Packing Problem

    Get PDF
    This paper develops a hybrid demon algorithm for a two-dimensional orthogonal strip packing problem. This algorithm combines a placement procedure based on an improved heuristic, local search, and demon algorithm involved in setting one parameter. The hybrid algorithm is tested on a wide set of benchmark instances taken from the literature and compared with other well-known algorithms. The computation results validate the quality of the solutions and the effectiveness of the proposed algorithm

    A new heuristic algorithm for two-dimensional defective stock guillotine cutting stock problem with multiple stock sizes

    Get PDF
    U radu se uglavnom raspravlja o problemu rezanja giljotinom dvodimenzijske oštećene robe raspoložive u različitim veličinama. Za raspravu o problemu predlaže se novi heuristički algoritam u obliku stabla. Takav se algoritam sastoji od dva dijela: prvi dio je početno rješenje problema rezanja robe kad ne postoje oštećenja robe; drugi dio je konačno rješenje optimizacije utemeljeno na prvom dijelu uz razmatranje oštećenja. U radu se također ocjenjuju rezultati predloženog algoritma. Eksperimentalnim se rezultatima demonstrira učinkovitost algoritma za problem rezanja dvodimenzijske oštećene robe i pokazuje da se algoritmom može poboljšati ne samo stopa iskoristivosti robe već i stopa ponovne uporabe ostataka smanjenjem fragmentacije ostataka.This paper mainly addresses a two-dimensional defective stocks guillotine cutting stock problem where stock of different sizes is available. Herein a new heuristic algorithm which is based on tree is proposed to discuss this problem. In particular, such an algorithm consists of two parts: the first part is an initial solution of the cutting stock problem where there are no defects on the stocks; the second part is the final optimization solution which is set up on the basis of the first part and takes the defects into consideration. This paper also evaluates the performance of the proposed algorithm. The experimental results demonstrate the effectiveness of the algorithm for the two-dimensional defective stocks cutting stock problem and show that the algorithm can improve not only the utilization rate of stocks, but also the reuse rate of remainders by reducing the fragmentation of remainders

    Evolutionary algorithms and hyper-heuristics for orthogonal packing problems

    Get PDF
    This thesis investigates two major classes of Evolutionary Algorithms, Genetic Algorithms (GAs) and Evolution Strategies (ESs), and their application to the Orthogonal Packing Problems (OPP). OPP are canonical models for NP-hard problems, the class of problems widely conceived to be unsolvable on a polynomial deterministic Turing machine, although they underlie many optimisation problems in the real world. With the increasing power of modern computers, GAs and ESs have been developed in the past decades to provide high quality solutions for a wide range of optimisation and learning problems. These algorithms are inspired by Darwinian nature selection mechanism that iteratively select better solutions in populations derived from recombining and mutating existing solutions. The algorithms have gained huge success in many areas, however, being stochastic processes, the algorithms' behaviour on different problems is still far from being fully understood. The work of this thesis provides insights to better understand both the algorithms and the problems. The thesis begins with an investigation of hyper-heuristics as a more general search paradigm based on standard EAs. Hyper-heuristics are shown to be able to overcome the difficulty of many standard approaches which only search in partial solution space. The thesis also looks into the fundamental theory of GAs, the schemata theorem and the building block hypothesis, by developing the Grouping Genetic Algorithms (GGA) for high dimensional problems and providing supportive yet qualified empirical evidences for the hypothesis. Realising the difficulties of genetic encoding over combinatorial search domains, the thesis proposes a phenotype representation together with Evolution Strategies that operates on such representation. ESs were previously applied mainly to continuous numerical optimisation, therefore being less understood when searching in combinatorial domains. The work in this thesis develops highly competent ES algorithms for OPP and opens the door for future research in this area

    Evolutionary algorithms and hyper-heuristics for orthogonal packing problems

    Get PDF
    This thesis investigates two major classes of Evolutionary Algorithms, Genetic Algorithms (GAs) and Evolution Strategies (ESs), and their application to the Orthogonal Packing Problems (OPP). OPP are canonical models for NP-hard problems, the class of problems widely conceived to be unsolvable on a polynomial deterministic Turing machine, although they underlie many optimisation problems in the real world. With the increasing power of modern computers, GAs and ESs have been developed in the past decades to provide high quality solutions for a wide range of optimisation and learning problems. These algorithms are inspired by Darwinian nature selection mechanism that iteratively select better solutions in populations derived from recombining and mutating existing solutions. The algorithms have gained huge success in many areas, however, being stochastic processes, the algorithms' behaviour on different problems is still far from being fully understood. The work of this thesis provides insights to better understand both the algorithms and the problems. The thesis begins with an investigation of hyper-heuristics as a more general search paradigm based on standard EAs. Hyper-heuristics are shown to be able to overcome the difficulty of many standard approaches which only search in partial solution space. The thesis also looks into the fundamental theory of GAs, the schemata theorem and the building block hypothesis, by developing the Grouping Genetic Algorithms (GGA) for high dimensional problems and providing supportive yet qualified empirical evidences for the hypothesis. Realising the difficulties of genetic encoding over combinatorial search domains, the thesis proposes a phenotype representation together with Evolution Strategies that operates on such representation. ESs were previously applied mainly to continuous numerical optimisation, therefore being less understood when searching in combinatorial domains. The work in this thesis develops highly competent ES algorithms for OPP and opens the door for future research in this area

    Meta-raps: Parameter Setting And New Applications

    Get PDF
    Recently meta-heuristics have become a popular solution methodology, in terms of both research and application, for solving combinatorial optimization problems. Meta-heuristic methods guide simple heuristics or priority rules designed to solve a particular problem. Meta-heuristics enhance these simple heuristics by using a higher level strategy. The advantage of using meta-heuristics over conventional optimization methods is meta-heuristics are able to find good (near optimal) solutions within a reasonable computation time. Investigating this line of research is justified because in most practical cases with medium to large scale problems, the use of meta-heuristics is necessary to be able to find a solution in a reasonable time. The specific meta-heuristic studied in this research is, Meta-RaPS; Meta-heuristic for Randomized Priority Search which is developed by DePuy and Whitehouse in 2001. Meta-RaPS is a generic, high level strategy used to modify greedy algorithms based on the insertion of a random element (Moraga, 2002). To date, Meta-RaPS had been applied to different types of combinatorial optimization problems and achieved comparable solution performance to other meta-heuristic techniques. The specific problem studied in this dissertation is parameter setting of Meta-RaPS. The topic of parameter setting for meta-heuristics has not been extensively studied in the literature. Although the parameter setting method devised in this dissertation is used primarily on Meta-RaPS, it is applicable to any meta-heuristic\u27s parameter setting problem. This dissertation not only enhances the power of Meta-RaPS by parameter tuning but also it introduces a robust parameter selection technique with wide-spread utility for many meta-heuristics. Because the distribution of solution values generated by meta-heuristics for combinatorial optimization problems is not normal, the current parameter setting techniques which employ a parametric approach based on the assumption of normality may not be appropriate. The proposed method is Non-parametric Based Genetic Algorithms. Based on statistical tests, the Non-parametric Based Genetic Algorithms (NPGA) is able to enhance the solution quality of Meta-RaPS more than any other parameter setting procedures benchmarked in this research. NPGA sets the best parameter settings, of all the methods studied, for 38 of the 41 Early/Tardy Single Machine Scheduling with Common Due Date and Sequence-Dependent Setup Time (ETP) problems and 50 of the 54 0-1 Multidimensional Knapsack Problems (0-1 MKP). In addition to the parameter setting procedure discussed, this dissertation provides two Meta-RaPS combinatorial optimization problem applications, the 0-1 MKP, and the ETP. For the ETP problem, the Meta-RaPS application in this dissertation currently gives the best meta-heuristic solution performance so far in the literature for common ETP test sets. For the large ETP test set, Meta-RaPS provided better solution performance than Simulated Annealing (SA) for 55 of the 60 problems. For the small test set, in all four different small problem sets, the Meta-RaPS solution performance outperformed exiting algorithms in terms of average percent deviation from the optimal solution value. For the 0-1 MKP, the present Meta-RaPS application performs better than the earlier Meta-RaPS applications by other researchers on this problem. The Meta-RaPS 0-1 MKP application presented here has better solution quality than the existing Meta-RaPS application (Moraga, 2005) found in the literature. Meta-RaPS gives 0.75% average percent deviation, from the best known solutions, for the 270 0-1 MKP test problems

    A genetic programming hyper-heuristic approach to automated packing

    Get PDF
    This thesis presents a programme of research which investigated a genetic programming hyper-heuristic methodology to automate the heuristic design process for one, two and three dimensional packing problems. Traditionally, heuristic search methodologies operate on a space of potential solutions to a problem. In contrast, a hyper-heuristic is a heuristic which searches a space of heuristics, rather than a solution space directly. The majority of hyper-heuristic research papers, so far, have involved selecting a heuristic, or sequence of heuristics, from a set pre-defined by the practitioner. Less well studied are hyper-heuristics which can create new heuristics, from a set of potential components. This thesis presents a genetic programming hyper-heuristic which makes it possible to automatically generate heuristics for a wide variety of packing problems. The genetic programming algorithm creates heuristics by intelligently combining components. The evolved heuristics are shown to be highly competitive with human created heuristics. The methodology is first applied to one dimensional bin packing, where the evolved heuristics are analysed to determine their quality, specialisation, robustness, and scalability. Importantly, it is shown that these heuristics are able to be reused on unseen problems. The methodology is then applied to the two dimensional packing problem to determine if automatic heuristic generation is possible for this domain. The three dimensional bin packing and knapsack problems are then addressed. It is shown that the genetic programming hyper-heuristic methodology can evolve human competitive heuristics, for the one, two, and three dimensional cases of both of these problems. No change of parameters or code is required between runs. This represents the first packing algorithm in the literature able to claim human competitive results in such a wide variety of packing domains
    corecore