24,075 research outputs found

    A simulated annealing approach to communication network design

    Get PDF

    Online) An Open Access

    Get PDF
    ABSTRACT A simulated annealing approach to the assignment of program tasks to processors in a distributed computer system is presented. Tasks of a program require certain capacitated computer resources. They also communicate at a given rate. Processors are interconnected by a communication network constituted of various types of links: local area network (LAN), wide area network (WAN) and specialised links. The communication resources are also capacitated. The purpose is to find the assignment of tasks to processors such that a measure of performance is optimised, the requirements of each task are met and the capacities of the resources are not violated. Various versions of the problem are identified and formulated. The design of the simulated annealing algorithm to solve the most general version is then described. The results of computational experience are reported

    Simulated Annealing for Location Area Planning in Cellular networks

    Full text link
    LA planning in cellular network is useful for minimizing location management cost in GSM network. In fact, size of LA can be optimized to create a balance between the LA update rate and expected paging rate within LA. To get optimal result for LA planning in cellular network simulated annealing algorithm is used. Simulated annealing give optimal results in acceptable run-time.Comment: 7 Pages, JGraph-Hoc Journa

    Joint multicast routing and channel assignment in multiradio multichannel wireless mesh networks using simulated annealing

    Get PDF
    This is the post-print version of the article - Copyright @ 2008 Springer-VerlagThis paper proposes a simulated annealing (SA) algorithm based optimization approach to search a minimum-interference multicast tree which satisfies the end-to-end delay constraint and optimizes the usage of the scarce radio network resource in wireless mesh networks. In the proposed SA multicast algorithm, the path-oriented encoding method is adopted and each candidate solution is represented by a tree data structure (i.e., a set of paths). Since we anticipate the multicast trees on which the minimum-interference channel assignment can be produced, a fitness function that returns the total channel conflict is devised. The techniques for controlling the annealing process are well developed. A simple yet effective channel assignment algorithm is proposed to reduce the channel conflict. Simulation results show that the proposed SA based multicast algorithm can produce the multicast trees which have better performance in terms of both the total channel conflict and the tree cost than that of a well known multicast algorithm in wireless mesh networks.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Optimization of patch antennas via multithreaded simulated annealing based design exploration

    Get PDF
    In this paper, we present a new software framework for the optimization of the design of microstrip patch antennas. The proposed simulation and optimization framework implements a simulated annealing algorithm to perform design space exploration in order to identify the optimal patch antenna design. During each iteration of the optimization loop, we employ the popular MEEP simulation tool to evaluate explored design solutions. To speed up the design space exploration, the software framework is developed to run multiple MEEP simulations concurrently. This is achieved using multithreading to implement a manager-workers execution strategy. The number of worker threads is the same as the number of cores of the computer that is utilized. Thus, the computational runtime of the proposed software framework enables effective design space exploration. Simulations demonstrate the effectiveness of the proposed software framework

    Use of Devolved Controllers in Data Center Networks

    Full text link
    In a data center network, for example, it is quite often to use controllers to manage resources in a centralized man- ner. Centralized control, however, imposes a scalability problem. In this paper, we investigate the use of multiple independent controllers instead of a single omniscient controller to manage resources. Each controller looks after a portion of the network only, but they together cover the whole network. This therefore solves the scalability problem. We use flow allocation as an example to see how this approach can manage the bandwidth use in a distributed manner. The focus is on how to assign components of a network to the controllers so that (1) each controller only need to look after a small part of the network but (2) there is at least one controller that can answer any request. We outline a way to configure the controllers to fulfill these requirements as a proof that the use of devolved controllers is possible. We also discuss several issues related to such implementation.Comment: Appears in INFOCOM 2011 Cloud Computing Worksho
    • …
    corecore