303 research outputs found

    Simplified rail power conditioner based on a half-bridge indirect AC/DC/AC modular multilevel converter and a V/V power transformer

    Get PDF
    This paper presents a comprehensive study about a Simplified Rail Power Conditioner (SRPC) based on a half bridge indirect AC/DC/AC Modular Multilevel Converter (MMC) and a V/V traction power transformer. The proposed system with a half bridge MMC can decrease the costs, reduce the control complexity, and require less hardware devices in comparison with the rail power conditioner based on a full bridge indirect AC/DC/AC MMC. Moreover, the SRPC with a half bridge MMC is able to compensate current harmonics, reactive power, and the Negative Sequence Components (NSCs) of currents, which are caused by the unbalance loads between power grid phases. This paper explains the system architecture and its control algorithms based on a pulse width modulation and a proportional integral controller, which is used to control the compensation currents. The simulation results of the SRPC show the submodule voltage balancing control and the DC bus voltage control in order to verify its effectiveness. The compensation strategy based on the NSCs detection is described and evaluated through simulation results.Mohamed Tanta was supported by FCT (Fundacao para a Ciencia e Tecnologia) PhD grant with a reference PD/BD/127815/2016. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Topologies and operation modes of rail power conditioners in AC traction grids: review and comprehensive comparison

    Get PDF
    Electric locomotives in AC traction power systems represent a huge single-phase non-linear load and, detrimentally, affect the power quality and the efficiency of the three-phase power grid. Nevertheless, along the last decades, power electronics are being used to mitigate power quality problems in the three-phase power grid. In particular, Rail Power Conditioner (RPC) helps to increase the loading capacity of traction substations and improve the power quality of three-phase power grids. As the main characteristics, an RPC can supply reactive power, suppress current harmonics and overcome currents imbalance of the three-phase power grid. On the other hand, the traction substations may be constituted by different types of power transformers. For instance, single-phase power transformers and open-delta (V/V) power transformers are widely used, while Scott power transformers are less frequently used, since they are more complex and expensive. In this framework, this work presents a review study of RPC topologies, including their operation modes, and a comprehensive comparison between the characteristics of the RPC topologies when using different types of AC traction substations and power transformers. This helps to ensure the correct selection of the RPC topology for a specific application, according to the main structure of the traction substation. Consequently, and based on the established review, it is possible to sort and allocate each RPC topology for limited or wider applications.This work was supported by the Portuguese Foundation of Science and Technology (FCT) (in Portuguese, Fundação para a Ciência e Tecnologia, within the R&D Units Project Scope: UIDB/00319/2020). The first author Mohamed Tanta is supported by FCT Ph.D. grant with a reference PD/BD/127815/2016

    A review on power electronics technologies for power quality improvement

    Get PDF
    Nowadays, new challenges arise relating to the compensation of power quality problems, where the introduction of innovative solutions based on power electronics is of paramount importance. The evolution from conventional electrical power grids to smart grids requires the use of a large number of power electronics converters, indispensable for the integration of key technologies, such as renewable energies, electric mobility and energy storage systems, which adds importance to power quality issues. Addressing these topics, this paper presents an extensive review on power electronics technologies applied to power quality improvement, highlighting, and explaining the main phenomena associated with the occurrence of power quality problems in smart grids, their cause and effects for different activity sectors, and the main power electronics topologies for each technological solution. More specifically, the paper presents a review and classification of the main power quality problems and the respective context with the standards, a review of power quality problems related to the power production from renewables, the contextualization with solid-state transformers, electric mobility and electrical railway systems, a review of power electronics solutions to compensate the main power quality problems, as well as power electronics solutions to guarantee high levels of power quality. Relevant experimental results and exemplificative developed power electronics prototypes are also presented throughout the paper.This work has been supported by FCT-Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. This work has been supported by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017 and by the FCT Project newERA4GRIDs PTDC/EEIEEE/30283/2017

    A comprehensive comparison of rail power conditioners based on two-level converters and a V/V power transformer in railway traction power systems

    Get PDF
    Electric locomotives in the traction power systems represent huge nonlinear single phase loads and they affect adversely the public electrical grid stability and the power quality. Some of such problems are related to the harmonic distortion and the Negative Sequence Components (NSCs). The Rail Power Conditioners (RPCs) are widely used to accomplish harmonics mitigation, besides NSCs compensation, then, maintaining balanced and sinusoidal public electrical grid currents. This paper presents a comprehensive comparison study between three different RPCs based on the two level converters and a V/V power transformer. The Four Wire Rail Power Conditioner (FW RPC), the Three Wire Rail Power Conditioner (TW RPC) and the Half Bridge Rail Power Conditioner (HB RPC) are the main conditioners of interest. The main contribution of this paper is to perform a comprehensive comparison between the aforementioned RPCs, including the control algorithms and the compensating performance regarding the power quality problems. Simulation results with different operation scenarios are presented to establish an appropriate comparison between the aforementioned RPCs topologies.Mohamed Tanta was supported by FCT (Fundação para a Ciência e Tecnologia) PhD grant with a reference PD/BD/127815/2016. This work has been supported by COMPETE: POCI-01-0145–FEDER–007043 and FCT within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Rail power conditioner based on indirect AC/DC/AC modular multilevel converter using a three-phase V/V power transformer

    Get PDF
    This paper presents a rail power conditioner (RPC) system based on an indirect AC/DC/AC modular multilevel converter (MMC) where a V/V power transformer is used to feed the main catenary line and the locomotives. The proposed control strategy for this system has been introduced to guarantee a good compensating performance of negative sequence currents (NSCs) and harmonics on the public grid side. This control strategy has also the ability to achieve balanced and equal voltage between the MMC’s submodules (SMs) capacitors. Simulation results for this RPC based on an indirect MMC are presented in this paper to show the main advantages of using this topology. The results show how the proposed system is able to compensate NSCs and harmonics on the public grid side when the V/V power transformer feeds two unequal load sections.Fundação para a Ciência e Tecnologia (FCT)info:eu-repo/semantics/publishedVersio

    Cost estimation of rail power conditioner topologies based on indirect modular multilevel converter in v/v and scott power transformers

    Get PDF
    This paper presents a cost estimation study for several rail power conditioner (RPC) topologies based on an indirect modular multilevel converter (MMC), in which these topologies are combined with V/V or Scott power transformers. The RPC topologies under interest in this paper are: the RPC based on a full-bridge MMC (RPC based on MMC4), the RPC based on two-phase three-wire MMC (RPC based on MMC3), and the RPC based on a half-bridge MMC (RPC based on MMC2). These RPC systems operate at medium voltage levels in the interconnection to 25 kV-50 Hz catenary sections to solve power quality problems, such as the current harmonics and the negative sequence components (NSCs) of currents. Along the paper are described the V/V and the Scott power transformers, the RPC main architectures, and the estimated cost of implementation for each RPC topology considering V/V or Scott implementations. As main contribution, the presented results could help in the selection procedure of the RPC topology, giving the best economical solution according to the used power transformer (V/V or Scott).This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019. This work has been supported by FCT within the Project Scope DAIPESEV – Development of Advanced Integrated Power Electronic Systems for Electric Vehicles: PTDC/EEI-EEE/30382/2017. Mohamed Tanta is supported by the doctoral scholarship with a reference PD/BD/127815/2016 granted by the Portuguese FCT agency

    Analysis and Comparison of Modular Railway Power Conditioner for High-Speed Railway Traction System

    Get PDF

    Experimental validation of a reduced-scale rail power conditioner based on modular multilevel converter for AC railway power grids

    Get PDF
    Rail power conditioner (RPC) has the ability to improve the power quality in AC railway power grids. This power conditioner can increase the loading capacity of traction substations, balance the active power between the feeder load sections, and compensate for reactive power and current harmonics. At present, there is increasing use of multilevel converter topologies, which provide scalability and robust performance under different conditions. In this framework, modular multilevel converter (MMC) is emerging as a prominent solution for medium-voltage applications. Serving that purpose, this paper focuses on the implementation, testing, and validation of a reduced-scale laboratory prototype of a proposed RPC based on an MMC. The developed laboratory prototype, designed to be compact, reliable, and adaptable to multipurpose applications, is presented, highlighting the main control and power circuit boards of the MMC. In addition, MMC parameter design of the filter inductor and submodule capacitor is also explained. Experimental analysis and validation of a reduced-scale prototype RPC based on MMC topology, are provided to verify the power quality improvement in electrified railway power grids. Thus, two experimental case studies are presented: (1) when both of the load sections are unequally loaded; (2) when only one load section is loaded. Experimental results confirm the RPC based on MMC is effective in reducing the harmonic contents, solving the problem of three-phase current imbalance and compensating reactive power.This work has been supported by the Portuguese Foundation of Science and Technology (FCT), in Portuguese, Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. Mohamed Tanta was supported by FCT grant with a reference PD/BD/127815/2016. Jose Cunha is supported by FCT grant with a reference PB/BD/143005/2018. Luis A. M. Barros is supported by FCT grant with a reference PD/BD/143006/2018

    Deadbeat predictive current control for circulating currents reduction in a modular multilevel converter based rail power conditioner

    Get PDF
    This paper presents a deadbeat predictive current control methodology to reduce the circulating currents in a modular multilevel converter (MMC) when it operates as a rail power conditioner (RPC) in a conventional railway system-based V/V connection. For this purpose, a half-bridge MMC based on half-bridge submodules, operating as an RPC is explained, and the total system is denominated as a simplified rail power conditioner (SRPC). The SRPC in this study is used to compensate harmonics, reactive power, and the negative sequence component of currents. This paper explains the SRPC system architecture, the key control algorithms, and the deadbeat predictive current control methodology. Mathematical analysis, based on the MMC equivalent circuit, is described and the reference equations are presented. Moreover, simulation results of the deadbeat predictive current control methodology are compared with the results of the conventional proportional-integral (PI) controller. This comparison is to verify the effectiveness of the proposed control strategy. Simulation results of the SRPC show reduced circulating currents in the MMC phases when using the predictive control approach, besides accomplishing power quality improvement at the three-phase power grid side.This work has been supported by the Portuguese Foundation of Science and Technology (FCT), in Portuguese, Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020 and PTDC/EEI-EEE/28813/2017. The first author Mohamed Tanta is supported by FCT Ph.D. grant with a reference PD/BD/127815/2016

    Power Quality in Electrified Transportation Systems

    Get PDF
    "Power Quality in Electrified Transportation Systems" has covered interesting horizontal topics over diversified transportation technologies, ranging from railways to electric vehicles and ships. Although the attention is chiefly focused on typical railway issues such as harmonics, resonances and reactive power flow compensation, the integration of electric vehicles plays a significant role. The book is completed by some additional significant contributions, focusing on the interpretation of Power Quality phenomena propagation in railways using the fundamentals of electromagnetic theory and on electric ships in the light of the latest standardization efforts
    corecore