5,404 research outputs found

    Laserkeilausaineiston ja katunäkymäkuvien hyödyntäminen tieympäristön seurannassa

    Get PDF
    Utilization of laser scanning has increased during the past few years in many fields of applications, for example, in road environment monitoring. Mild winters, increasing rainfalls and frost are deteriorating the surface and structure of the road causing road damages. The road environment and its condition can be examined for example with laser scanning and street view images. Utilization of laser scanning data and street view images in road environment monitoring was studied in this thesis. The main focus was on the road damages and drainage. Also individual trees were detected nearby road scenes. TerraModeler and TerraScan software were used for investigations. Five different lidar datasets were used to detect road damages and drainage. Both mobile and helicopter-based lidar data were available from Jakomäki area. In Rauma case, there were two datasets collected from the helicopter but the point densities were different. In addition, to helicopter-based lidar data, there were also street view images available from BlomSTREET service in Hyvinkää case. The results between the datasets were compared. Aim was to investigate if same damages can be found from the several datasets that have different point densities. Lidar data for individual tree detection was collected by helicopter from Korppoo area. Tree locations were also measured with a tachymeter to get reference data for automatic detection. Heights of the trees were manually determined from the point cloud. Manually measured heights and locations were compared with automatically detected ones. Detection of rut depths, slopes and drainage is possible from the high point density datasets. From lower point density datasets it is not possible to detect for example rut depths. Point cloud is possible to color by slopes, which may give some information about rut locations even from lower point density datasets. Obtaining slopes and drainage accurately is also possible from lower point density data. With TerraModeler water gathering points can be obtained. Panorama pictures from BlomSTREET can be utilized for ensuring if there is a rainwater outlet or if water will gather as a puddle. Tree locations were detected in a meter accuracy with automatic method. Successful detection of tree heights and locations is dependent on many things. Successful classification of the data and creation of tree models are the most important parameters.Laserkeilaus on yleistynyt ja sitä hyödynnetään useissa eri sovelluksissa kuten esimerkiksi tiesovelluksissa. Leudot ja sateiset talvet sekä routa kuluttavat tien pintaa ja rakennetta aiheuttaen tievaurioita, jotka voivat olla vaaraksi liikenteelle. Tienkuntoa ja sen ympäristöä voidaan tarkastella esimerkiksi laserkeilausaineistojen sekä katunäkymäkuvien avulla. Työssä tutkittiin kuinka laserkeilausaineistoa ja katunäkymäkuvia voidaan hyödyntää tieympäristön seurannassa. Tutkimuksessa keskityttiin tarkastelemaan tievaurioita ja kuivatusta sekä tiealueiden läheisyydessä sijaitsevien puiden tunnistusta. Tutkimuksessa käytettiin TerraModeler ja TerraScan ohjelmistoja. Tievaurioita ja kuivatusta tutkittiin viidestä eri aineistosta kolmelta eri alueelta. Jakomäen alueelta tien ominaisuuksia tutkittiin sekä mobiili- että helikopterilaserkeilausaineistosta ja Rauman alueelta vaurioita kartoitettiin kahdesta eri helikopterilla kerätystä pistetiheyden aineistosta. Hyvinkäältä helikopterilla kerätyn laserkeilausaineiston lisäksi oli saatavilla katunäkymäkuvia BlomSTREET palvelusta. Aineistoista saatuja tuloksia vertailtiin keskenään ja tutkittiin, onko niistä mahdollista havaita samankaltaisia tuloksia. Yksittäisen puun tunnistukseen käytettiin helikopterilla kerättyä laserkeilausaineistoa Korppoon alueelta ja referenssinä aineistolle toimi maastossa mitatut puiden sijainnit. Automaattisesti määritettyjen puiden sijaintia verrattiin maastossa mitattuihin sijainteihin. Myös puiden korkeus määritettiin pistepilvestä manuaalisesti ja tätä verrattiin automaattiseen korkeuden määritykseen. Korkean pistetiheyden laserkeilausaineistoilla on mahdollista tutkia tien urautumista, tien kaltevuuksia ja kuivatusta. Matalamman pistetiheyden aineistoista ei pystytä määrittämään esimerkiksi urasyvyyksiä. Pistepilvi on mahdollista värjätä kaltevuuksien mukaan, minkä avulla urautumista voidaan havaita jossain määrin myös matalampien pistetiheyksien aineistoista. Tien kaltevuuksia ja kuivatusta pystytään havaitsemaan tarkasti jopa alhaisista pistetiheyden aineistoista. TerraModelerin avulla voidaan määrittää alueet, johon sadevesi kasautuu. BlomSTREET 360 panoraamakuvien avulla pystytään tarkastamaan onko kohdassa sadevesikaivo vai kerääntyykö vesi lammikoiksi. Yksittäisten puiden sijainnin määrittäminen onnistui noin metrin tarkkuudella, mutta sijainnin ja korkeuden määrittämisen onnistuminen on riippuvainen monesta tekijästä. Pistepilven luokittelun onnistumisen lisäksi yksi tärkeä tekijä on puiden muodoista tehdyt mallit, joiden avulla TerraScan ohjelmisto etsii yksittäisiä puita

    Automatic segmentation and reconstruction of traffic accident scenarios from mobile laser scanning data

    Get PDF
    Virtual reconstruction of historic sites, planning of restorations and attachments of new building parts, as well as forest inventory are few examples of fields that benefit from the application of 3D surveying data. Originally using 2D photo based documentation and manual distance measurements, the 3D information obtained from multi camera and laser scanning systems realizes a noticeable improvement regarding the surveying times and the amount of generated 3D information. The 3D data allows a detailed post processing and better visualization of all relevant spatial information. Yet, for the extraction of the required information from the raw scan data and for the generation of useable visual output, time-consuming, complex user-based data processing is still required, using the commercially available 3D software tools. In this context, the automatic object recognition from 3D point cloud and depth data has been discussed in many different works. The developed tools and methods however, usually only focus on a certain kind of object or the detection of learned invariant surface shapes. Although the resulting methods are applicable for certain practices of data segmentation, they are not necessarily suitable for arbitrary tasks due to the varying requirements of the different fields of research. This thesis presents a more widespread solution for automatic scene reconstruction from 3D point clouds, targeting street scenarios, specifically for the task of traffic accident scene analysis and documentation. The data, obtained by sampling the scene using a mobile scanning system is evaluated, segmented, and finally used to generate detailed 3D information of the scanned environment. To realize this aim, this work adapts and validates various existing approaches on laser scan segmentation regarding the application on accident relevant scene information, including road surfaces and markings, vehicles, walls, trees and other salient objects. The approaches are therefore evaluated regarding their suitability and limitations for the given tasks, as well as for possibilities concerning the combined application together with other procedures. The obtained knowledge is used for the development of new algorithms and procedures to allow a satisfying segmentation and reconstruction of the scene, corresponding to the available sampling densities and precisions. Besides the segmentation of the point cloud data, this thesis presents different visualization and reconstruction methods to achieve a wider range of possible applications of the developed system for data export and utilization in different third party software tools

    Uses and Challenges of Collecting LiDAR Data from a Growing Autonomous Vehicle Fleet: Implications for Infrastructure Planning and Inspection Practices

    Get PDF
    Autonomous vehicles (AVs) that utilize LiDAR (Light Detection and Ranging) and other sensing technologies are becoming an inevitable part of transportation industry. Concurrently, transportation agencies are increasingly challenged with the management and tracking of large-scale highway asset inventory. LiDAR has become popular among transportation agencies for highway asset management given its advantage over traditional surveying methods. The affordability of LiDAR technology is increasing day by day. Given this, there will be substantial challenges and opportunities for the utilization of big data resulting from the growth of AVs with LiDAR. A proper understanding of the data size generated from this technology will help agencies in making decisions regarding storage, management, and transmission of the data. The original raw data generated from the sensor shrinks a lot after filtering and processing following the Cache county Road Manual and storing into ASPRS recommended (.las) file format. In this pilot study, it is found that while considering the road centerline as the vehicle trajectory larger portion of the data fall into the right of way section compared to the actual vehicle trajectory in Cache County, UT. And there is a positive relation between the data size and vehicle speed in terms of the travel lanes section given the nature of the selected highway environment

    Detection of Road Conditions Using Image Processing and Machine Learning Techniques for Situation Awareness

    Get PDF
    In this modern era, land transports are increasing dramatically. Moreover, self-driven car or the Advanced Driving Assistance System (ADAS) is now the public demand. For these types of cars, road conditions detection is mandatory. On the other hand, compared to the number of vehicles, to increase the number of roads is not possible. Software is the only alternative solution. Road Conditions Detection system will help to solve the issues. For solving this problem, Image processing, and machine learning have been applied to develop a project namely, Detection of Road Conditions Using Image Processing and Machine Learning Techniques for Situation Awareness. Many issues could be considered for road conditions but the main focus will be on the detection of potholes, Maintenance sings and lane. Image processing and machine learning have been combined for our system for detecting in real-time. Machine learning has been applied to maintains signs detection. Image processing has been applied for detecting lanes and potholes. The detection system will provide a lane mark with colored lines, the pothole will be a marker with a red rectangular box and for a road Maintenance sign, the system will also provide information of aintenance sign as maintenance sing is detected. By observing all these scenarios, the driver will realize the road condition. On the other hand situation awareness is the ability to perceive information from it’s surrounding, takes decisions based on perceived information and it makes decision based on prediction

    Vision-based Detection of Mobile Device Use While Driving

    Get PDF
    The aim of this study was to explore the feasibility of an automatic vision-based solution to detect drivers using mobile devices while operating their vehicles. The proposed system comprises of modules for vehicle license plate localisation, driver’s face detection and mobile phone interaction. The system were then implemented and systematically evaluated using suitable image datasets. The strengths and weaknesses of individual modules were analysed and further recommendations made to improve the overall system’s performance
    corecore