4,762 research outputs found

    Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations

    Full text link
    We present a formal tool for verification of multivariate nonlinear inequalities. Our verification method is based on interval arithmetic with Taylor approximations. Our tool is implemented in the HOL Light proof assistant and it is capable to verify multivariate nonlinear polynomial and non-polynomial inequalities on rectangular domains. One of the main features of our work is an efficient implementation of the verification procedure which can prove non-trivial high-dimensional inequalities in several seconds. We developed the verification tool as a part of the Flyspeck project (a formal proof of the Kepler conjecture). The Flyspeck project includes about 1000 nonlinear inequalities. We successfully tested our method on more than 100 Flyspeck inequalities and estimated that the formal verification procedure is about 3000 times slower than an informal verification method implemented in C++. We also describe future work and prospective optimizations for our method.Comment: 15 page

    Grafting Hypersequents onto Nested Sequents

    Full text link
    We introduce a new Gentzen-style framework of grafted hypersequents that combines the formalism of nested sequents with that of hypersequents. To illustrate the potential of the framework, we present novel calculi for the modal logics K5\mathsf{K5} and KD5\mathsf{KD5}, as well as for extensions of the modal logics K\mathsf{K} and KD\mathsf{KD} with the axiom for shift reflexivity. The latter of these extensions is also known as SDL+\mathsf{SDL}^+ in the context of deontic logic. All our calculi enjoy syntactic cut elimination and can be used in backwards proof search procedures of optimal complexity. The tableaufication of the calculi for K5\mathsf{K5} and KD5\mathsf{KD5} yields simplified prefixed tableau calculi for these logic reminiscent of the simplified tableau system for S5\mathsf{S5}, which might be of independent interest

    On Counterexample Guided Quantifier Instantiation for Synthesis in CVC4

    Full text link
    We introduce the first program synthesis engine implemented inside an SMT solver. We present an approach that extracts solution functions from unsatisfiability proofs of the negated form of synthesis conjectures. We also discuss novel counterexample-guided techniques for quantifier instantiation that we use to make finding such proofs practically feasible. A particularly important class of specifications are single-invocation properties, for which we present a dedicated algorithm. To support syntax restrictions on generated solutions, our approach can transform a solution found without restrictions into the desired syntactic form. As an alternative, we show how to use evaluation function axioms to embed syntactic restrictions into constraints over algebraic datatypes, and then use an algebraic datatype decision procedure to drive synthesis. Our experimental evaluation on syntax-guided synthesis benchmarks shows that our implementation in the CVC4 SMT solver is competitive with state-of-the-art tools for synthesis

    Proof Simplification in the Framework of Coherent Logic

    Get PDF
    The problem of proof simplification draws a lot of attention to itself across various contexts. In this paper, we present one approach for simplifying proofs constructed in the framework of coherent logic. This approach is motivated by the need for filtering-out "clean'' and short proofs from proof-traces, which typically contain many irrelevant steps, and which are generated by automated theorem provers - in this case, theorem provers based on coherent logic. Such "clean'' proofs can then be used for producing readable proofs in natural-language form. The proof simplification procedure consists of three transformation steps. The first one is based on the elimination of inference steps which are irrelevant for the present proof, also allowing some irrelevant branchings to be eliminated, the second one consists of lifting-up steps through the branching steps, followed by elimination of repeated steps, while the third one serves to convert proof fragments into the reductio ad absurdum form, if possible. In contrast to general simplification procedures, our proof simplification procedure is specific for a fragment of first order logic and therefore simple and easy to implement, and allows simple generation of object level proofs. We proceed to prove that this procedure is correct and terminating, and also that it never increases the size of a proof. Finally, we implement the proof simplification procedure, and provide several example proofs

    Linearization of CIF Through SOS

    Get PDF
    Linearization is the procedure of rewriting a process term into a linear form, which consist only of basic operators of the process language. This procedure is interesting both from a theoretical and a practical point of view. In particular, a linearization algorithm is needed for the Compositional Interchange Format (CIF), an automaton based modeling language. The problem of devising efficient linearization algorithms is not trivial, and has been already addressed in literature. However, the linearization algorithms obtained are the result of an inventive process, and the proof of correctness comes as an afterthought. Furthermore, the semantic specification of the language does not play an important role on the design of the algorithm. In this work we present a method for obtaining an efficient linearization algorithm, through a step-wise refinement of the SOS rules of CIF. As a result, we show how the semantic specification of the language can guide the implementation of such a procedure, yielding a simple proof of correctness.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    A Survey of Satisfiability Modulo Theory

    Full text link
    Satisfiability modulo theory (SMT) consists in testing the satisfiability of first-order formulas over linear integer or real arithmetic, or other theories. In this survey, we explain the combination of propositional satisfiability and decision procedures for conjunctions known as DPLL(T), and the alternative "natural domain" approaches. We also cover quantifiers, Craig interpolants, polynomial arithmetic, and how SMT solvers are used in automated software analysis.Comment: Computer Algebra in Scientific Computing, Sep 2016, Bucharest, Romania. 201
    corecore