13,747 research outputs found

    A comparative study of ECG-derived respiration in ambulatory monitoring using the single-lead ECG

    Get PDF
    Cardiorespiratory monitoring is crucial for the diagnosis and management of multiple conditions such as stress and sleep disorders. Therefore, the development of ambulatory systems providing continuous, comfortable, and inexpensive means for monitoring represents an important research topic. Several techniques have been proposed in the literature to derive respiratory information from the ECG signal. Ten methods to compute single-lead ECG-derived respiration (EDR) were compared under multiple conditions, including different recording systems, baseline wander, normal and abnormal breathing patterns, changes in breathing rate, noise, and artifacts. Respiratory rates, wave morphology, and cardiorespiratory information were derived from the ECG and compared to those extracted from a reference respiratory signal. Three datasets were considered for analysis, involving a total 59 482 one-min, single-lead ECG segments recorded from 156 subjects. The results indicate that the methods based on QRS slopes outperform the other methods. This result is particularly interesting since simplicity is crucial for the development of ECG-based ambulatory systems

    Improved Liver R2* Mapping by Averaging Decay Curves.

    Get PDF
    Liver R2* mapping is often degraded by the low signal-to-noise ratio (SNR) especially in the presence of severe iron. This study aims to improve liver R2* mapping at low SNRs by averaging decay curves before the process of curve-fitting. Independently filtering echo images by nonlocal means (NLM) demonstrated improved quality of R2* mapping, but may introduce new errors due to the nonlinear nature of the NLM filter, during which the averaging weights may vary with different image contents at multiple echo times. In addition, the image denoising effect of the NLM may decline when no sufficient similar patches are available. To overcome these drawbacks, we proposed to filter decay curves instead of images. In this novel scheme, decay curves were averaged in a local window, each with a weight assigned according to the curve-similarity measured by the distance between one of the neighboring curves and the targeted one. The proposed method was tested on simulated, phantom and patient data. The results demonstrate that the proposed method can provide more accurate R2* mapping compared with the NLM algorithm, and hence has the potential to improve diagnosis and therapy in patients with liver iron

    The fractal heart — embracing mathematics in the cardiology clinic

    Get PDF
    For clinicians grappling with quantifying the complex spatial and temporal patterns of cardiac structure and function (such as myocardial trabeculae, coronary microvascular anatomy, tissue perfusion, myocyte histology, electrical conduction, heart rate, and blood-pressure variability), fractal analysis is a powerful, but still underused, mathematical tool. In this Perspectives article, we explain some fundamental principles of fractal geometry and place it in a familiar medical setting. We summarize studies in the cardiovascular sciences in which fractal methods have successfully been used to investigate disease mechanisms, and suggest potential future clinical roles in cardiac imaging and time series measurements. We believe that clinical researchers can deploy innovative fractal solutions to common cardiac problems that might ultimately translate into advancements for patient care

    Methods for Analysing Endothelial Cell Shape and Behaviour in Relation to the Focal Nature of Atherosclerosis

    Get PDF
    The aim of this thesis is to develop automated methods for the analysis of the spatial patterns, and the functional behaviour of endothelial cells, viewed under microscopy, with applications to the understanding of atherosclerosis. Initially, a radial search approach to segmentation was attempted in order to trace the cell and nuclei boundaries using a maximum likelihood algorithm; it was found inadequate to detect the weak cell boundaries present in the available data. A parametric cell shape model was then introduced to fit an equivalent ellipse to the cell boundary by matching phase-invariant orientation fields of the image and a candidate cell shape. This approach succeeded on good quality images, but failed on images with weak cell boundaries. Finally, a support vector machines based method, relying on a rich set of visual features, and a small but high quality training dataset, was found to work well on large numbers of cells even in the presence of strong intensity variations and imaging noise. Using the segmentation results, several standard shear-stress dependent parameters of cell morphology were studied, and evidence for similar behaviour in some cell shape parameters was obtained in in-vivo cells and their nuclei. Nuclear and cell orientations around immature and mature aortas were broadly similar, suggesting that the pattern of flow direction near the wall stayed approximately constant with age. The relation was less strong for the cell and nuclear length-to-width ratios. Two novel shape analysis approaches were attempted to find other properties of cell shape which could be used to annotate or characterise patterns, since a wide variability in cell and nuclear shapes was observed which did not appear to fit the standard parameterisations. Although no firm conclusions can yet be drawn, the work lays the foundation for future studies of cell morphology. To draw inferences about patterns in the functional response of cells to flow, which may play a role in the progression of disease, single-cell analysis was performed using calcium sensitive florescence probes. Calcium transient rates were found to change with flow, but more importantly, local patterns of synchronisation in multi-cellular groups were discernable and appear to change with flow. The patterns suggest a new functional mechanism in flow-mediation of cell-cell calcium signalling

    Wrist Photoplethysmography Signal Quality Assessment for Reliable Heart Rate Estimate and Morphological Analysis

    Get PDF
    Photoplethysmographic (PPG) signals are mainly employed for heart rate estimation but are also fascinating candidates in the search for cardiovascular biomarkers. However, their high susceptibility to motion artifacts can lower their morphological quality and, hence, affect the reliability of the extracted information. Low reliability is particularly relevant when signals are recorded in a real-world context, during daily life activities. We aim to develop two classifiers to identify PPG pulses suitable for heart rate estimation (Basic-quality classifier) and morphological analysis (High-quality classifier). We collected wrist PPG data from 31 participants over a 24 h period. We defined four activity ranges based on accelerometer data and randomly selected an equal number of PPG pulses from each range to train and test the classifiers. Independent raters labeled the pulses into three quality levels. Nineteen features, including nine novel features, were extracted from PPG pulses and accelerometer signals. We conducted ten-fold cross-validation on the training set (70%) to optimize hyperparameters of five machine learning algorithms and a neural network, and the remaining 30% was used to test the algorithms. Performances were evaluated using the full features and a reduced set, obtained downstream of feature selection methods. Best performances for both Basic- and High-quality classifiers were achieved using a Support Vector Machine (Acc: 0.96 and 0.97, respectively). Both classifiers outperformed comparable state-of-the-art classifiers. Implementing automatic signal quality assessment methods is essential to improve the reliability of PPG parameters and broaden their applicability in a real-world context

    Robust tracking of respiratory rate in high-dynamic range scenes using mobile thermal imaging

    Get PDF
    The ability to monitor respiratory rate is extremely important for medical treatment, healthcare and fitness sectors. In many situations, mobile methods, which allow users to undertake every day activities, are required. However, current monitoring systems can be obtrusive, requiring users to wear respiration belts or nasal probes. Recent advances in thermographic systems have shrunk their size, weight and cost, to the point where it is possible to create smart-phone based respiration rate monitoring devices that are not affected by lighting conditions. However, mobile thermal imaging is challenged in scenes with high thermal dynamic ranges. This challenge is further amplified by general problems such as motion artifacts and low spatial resolution, leading to unreliable breathing signals. In this paper, we propose a novel and robust approach for respiration tracking which compensates for the negative effects of variations in the ambient temperature and motion artifacts and can accurately extract breathing rates in highly dynamic thermal scenes. It has three main contributions. The first is a novel Optimal Quantization technique which adaptively constructs a color mapping of absolute temperature to improve segmentation, classification and tracking. The second is the Thermal Gradient Flow method that computes thermal gradient magnitude maps to enhance accuracy of the nostril region tracking. Finally, we introduce the Thermal Voxel method to increase the reliability of the captured respiration signals compared to the traditional averaging method. We demonstrate the extreme robustness of our system to track the nostril-region and measure the respiratory rate in high dynamic range scenes.Comment: Vol. 8, No. 10, 1 Oct 2017, Biomedical Optics Express 4480 - Full abstract can be found in this journal article (due to limited word counts of 'arXiv abstract'
    • …
    corecore