224 research outputs found

    Duality Between Prefetching and Queued Writing with Parallel Disks

    Get PDF
    This is the published version, made available with the permission of the publisher. Copyright © 2005 Society for Industrial and Applied Mathematics.Parallel disks promise to be a cost effective means for achieving high bandwidth in applications involving massive data sets, but algorithms for parallel disks can be difficult to devise. To combat this problem, we define a useful and natural duality between writing to parallel disks and the seemingly more difficult problem of prefetching. We first explore this duality for applications involving read-once accesses using parallel disks. We get a simple linear time algorithm for computing optimal prefetch schedules and analyze the efficiency of the resulting schedules for randomly placed data and for arbitrary interleaved accesses to striped sequences. Duality also provides an optimal schedule for prefetching plus caching, where blocks can be accessed multiple times. Another application of this duality gives us the first parallel disk sorting algorithms that are provably optimal up to lower-order terms. One of these algorithms is a simple and practical variant of multiway mergesort, addressing a question that had been open for some time

    Algorithmic ramifications of prefetching in memory hierarchy

    Get PDF
    External Memory models, most notable being the I-O Model [3], capture the effects of memory hierarchy and aid in algorithm design. More than a decade of architectural advancements have led to new features not captured in the I-O model - most notably the prefetching capability. We propose a relatively simple Prefetch model that incorporates data prefetching in the traditional I-O models and show how to design algorithms that can attain close to peak memory bandwidth. Unlike (the inverse of) memory latency, the memory bandwidth is much closer to the processing speed, thereby, intelligent use of prefetching can considerably mitigate the I-O bottleneck. For some fundamental problems, our algorithms attain running times approaching that of the idealized Random Access Machines under reasonable assumptions. Our work also explains the significantly superior performance of the I-O efficient algorithms in systems that support prefetching compared to ones that do not

    Algorithm Libraries for Multi-Core Processors

    Get PDF
    By providing parallelized versions of established algorithm libraries, we ease the exploitation of the multiple cores on modern processors for the programmer. The Multi-Core STL provides basic algorithms for internal memory, while the parallelized STXXL enables multi-core acceleration for algorithms on large data sets stored on disk. Some parallelized geometric algorithms are introduced into CGAL. Further, we design and implement sorting algorithms for huge data in distributed external memory

    Scalable String and Suffix Sorting: Algorithms, Techniques, and Tools

    Get PDF
    This dissertation focuses on two fundamental sorting problems: string sorting and suffix sorting. The first part considers parallel string sorting on shared-memory multi-core machines, the second part external memory suffix sorting using the induced sorting principle, and the third part distributed external memory suffix sorting with a new distributed algorithmic big data framework named Thrill.Comment: 396 pages, dissertation, Karlsruher Instituts f\"ur Technologie (2018). arXiv admin note: text overlap with arXiv:1101.3448 by other author

    Towards a theory of cache-efficient algorithms

    Get PDF
    We describe a model that enables us to analyze the running time of an algorithm in a computer with a memory hierarchy with limited associativity, in terms of various cache parameters. Our model, an extension of Aggarwal and Vitter's I/O model, enables us to establish useful relationships between the cache complexity and the I/O complexity of computations. As a corollary, we obtain cache-optimal algorithms for some fundamental problems like sorting, FFT, and an important subclass of permutations in the single-level cache model. We also show that ignoring associativity concerns could lead to inferior performance, by analyzing the average-case cache behavior of mergesort. We further extend our model to multiple levels of cache with limited associativity and present optimal algorithms for matrix transpose and sorting. Our techniques may be used for systematic exploitation of the memory hierarchy starting from the algorithm design stage, and dealing with the hitherto unresolved problem of limited associativity
    • …
    corecore