198 research outputs found

    Design of an Offline Handwriting Recognition System Tested on the Bangla and Korean Scripts

    Get PDF
    This dissertation presents a flexible and robust offline handwriting recognition system which is tested on the Bangla and Korean scripts. Offline handwriting recognition is one of the most challenging and yet to be solved problems in machine learning. While a few popular scripts (like Latin) have received a lot of attention, many other widely used scripts (like Bangla) have seen very little progress. Features such as connectedness and vowels structured as diacritics make it a challenging script to recognize. A simple and robust design for offline recognition is presented which not only works reliably, but also can be used for almost any alphabetic writing system. The framework has been rigorously tested for Bangla and demonstrated how it can be transformed to apply to other scripts through experiments on the Korean script whose two-dimensional arrangement of characters makes it a challenge to recognize. The base of this design is a character spotting network which detects the location of different script elements (such as characters, diacritics) from an unsegmented word image. A transcript is formed from the detected classes based on their corresponding location information. This is the first reported lexicon-free offline recognition system for Bangla and achieves a Character Recognition Accuracy (CRA) of 94.8%. This is also one of the most flexible architectures ever presented. Recognition of Korean was achieved with a 91.2% CRA. Also, a powerful technique of autonomous tagging was developed which can drastically reduce the effort of preparing a dataset for any script. The combination of the character spotting method and the autonomous tagging brings the entire offline recognition problem very close to a singular solution. Additionally, a database named the Boise State Bangla Handwriting Dataset was developed. This is one of the richest offline datasets currently available for Bangla and this has been made publicly accessible to accelerate the research progress. Many other tools were developed and experiments were conducted to more rigorously validate this framework by evaluating the method against external datasets (CMATERdb 1.1.1, Indic Word Dataset and REID2019: Early Indian Printed Documents). Offline handwriting recognition is an extremely promising technology and the outcome of this research moves the field significantly ahead

    Deep Learning-based Recognition of Devanagari Handwritten Characters

    Get PDF
    Numerous techniques have been used over many years to study handwriting recognition. There are two methods for reading handwriting, one of which is online and the other offline. Image recognition is the main part of the handwriting recognition process. Image recognition gives careful consideration to the picture's dimensions, viewing angle, and image quality. Machine learning and deep learning techniques are the two areas of focus for developers looking to increase the intelligence of computers. A person may learn to perform a task by repeatedly exercising it until they recall how to do it. His brain's neurons begin to work automatically, enabling him to carry out the task he has quickly learned. This and deep learning are fairly similar. It uses a variety of neural network designs to address a range of problems. The convolution neural network (CNN) is a very effective technique for handwriting and picture detection

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field

    Offline Recognition of Malayalam and Kannada Handwritten Documents Using Deep Learning

    Get PDF
    For a variety of reasons, handwritten text can be digitalized. It is used in a variety of government entities, including banks, post offices, and archaeological departments. Handwriting recognition, on the other hand, is a difficult task as everyone has a different writing style. There are essentially two methods for handwritten recognition: a holistic and an analytic approach. The previous methods of handwriting recognition are time- consuming. However, as deep neural networks have progressed, the approach has become more straightforward than previous methods. Furthermore, the bulk of existing solutions are limited to a single language. To recognise multilanguage handwritten manuscripts offline, this work employs an analytic approach. It describes how to convert Malayalam and Kannada handwritten manuscripts into editable text. Lines are separated from the input document first. After that, word segmentation is performed. Finally, each word is broken down into individual characters. An artificial neural network is utilised for feature extraction and classification. After that, the result is converted to a word document

    Handwritten Digit Recognition Using Machine Learning Algorithms

    Get PDF
    Handwritten character recognition is one of the practically important issues in pattern recognition applications. The applications of digit recognition includes in postal mail sorting, bank check processing, form data entry, etc. The heart of the problem lies within the ability to develop an efficient algorithm that can recognize hand written digits and which is submitted by users by the way of a scanner, tablet, and other digital devices. This paper presents an approach to off-line handwritten digit recognition based on different machine learning technique. The main objective of this paper is to ensure effective and reliable approaches for recognition of handwritten digits. Several machines learning algorithm namely, Multilayer Perceptron, Support Vector Machine, NaFDA5; Bayes, Bayes Net, Random Forest, J48 and Random Tree has been used for the recognition of digits using WEKA. The result of this paper shows that highest 90.37% accuracy has been obtained for Multilayer Perceptron

    uTHCD: A New Benchmarking for Tamil Handwritten OCR

    Full text link
    Handwritten character recognition is a challenging research in the field of document image analysis over many decades due to numerous reasons such as large writing styles variation, inherent noise in data, expansive applications it offers, non-availability of benchmark databases etc. There has been considerable work reported in literature about creation of the database for several Indic scripts but the Tamil script is still in its infancy as it has been reported only in one database [5]. In this paper, we present the work done in the creation of an exhaustive and large unconstrained Tamil Handwritten Character Database (uTHCD). Database consists of around 91000 samples with nearly 600 samples in each of 156 classes. The database is a unified collection of both online and offline samples. Offline samples were collected by asking volunteers to write samples on a form inside a specified grid. For online samples, we made the volunteers write in a similar grid using a digital writing pad. The samples collected encompass a vast variety of writing styles, inherent distortions arising from offline scanning process viz stroke discontinuity, variable thickness of stroke, distortion etc. Algorithms which are resilient to such data can be practically deployed for real time applications. The samples were generated from around 650 native Tamil volunteers including school going kids, homemakers, university students and faculty. The isolated character database will be made publicly available as raw images and Hierarchical Data File (HDF) compressed file. With this database, we expect to set a new benchmark in Tamil handwritten character recognition and serve as a launchpad for many avenues in document image analysis domain. Paper also presents an ideal experimental set-up using the database on convolutional neural networks (CNN) with a baseline accuracy of 88% on test data.Comment: 30 pages, 18 figures, in IEEE Acces
    • …
    corecore