130,114 research outputs found

    Spatio-temporal Learning with Arrays of Analog Nanosynapses

    Full text link
    Emerging nanodevices such as resistive memories are being considered for hardware realizations of a variety of artificial neural networks (ANNs), including highly promising online variants of the learning approaches known as reservoir computing (RC) and the extreme learning machine (ELM). We propose an RC/ELM inspired learning system built with nanosynapses that performs both on-chip projection and regression operations. To address time-dynamic tasks, the hidden neurons of our system perform spatio-temporal integration and can be further enhanced with variable sampling or multiple activation windows. We detail the system and show its use in conjunction with a highly analog nanosynapse device on a standard task with intrinsic timing dynamics- the TI-46 battery of spoken digits. The system achieves nearly perfect (99%) accuracy at sufficient hidden layer size, which compares favorably with software results. In addition, the model is extended to a larger dataset, the MNIST database of handwritten digits. By translating the database into the time domain and using variable integration windows, up to 95% classification accuracy is achieved. In addition to an intrinsically low-power programming style, the proposed architecture learns very quickly and can easily be converted into a spiking system with negligible loss in performance- all features that confer significant energy efficiency.Comment: 6 pages, 3 figures. Presented at 2017 IEEE/ACM Symposium on Nanoscale architectures (NANOARCH

    Weakly supervised segment annotation via expectation kernel density estimation

    Full text link
    Since the labelling for the positive images/videos is ambiguous in weakly supervised segment annotation, negative mining based methods that only use the intra-class information emerge. In these methods, negative instances are utilized to penalize unknown instances to rank their likelihood of being an object, which can be considered as a voting in terms of similarity. However, these methods 1) ignore the information contained in positive bags, 2) only rank the likelihood but cannot generate an explicit decision function. In this paper, we propose a voting scheme involving not only the definite negative instances but also the ambiguous positive instances to make use of the extra useful information in the weakly labelled positive bags. In the scheme, each instance votes for its label with a magnitude arising from the similarity, and the ambiguous positive instances are assigned soft labels that are iteratively updated during the voting. It overcomes the limitations of voting using only the negative bags. We also propose an expectation kernel density estimation (eKDE) algorithm to gain further insight into the voting mechanism. Experimental results demonstrate the superiority of our scheme beyond the baselines.Comment: 9 pages, 2 figure
    • …
    corecore