10,130 research outputs found

    Validation by Measurements of a IC Modeling Approach for SiP Applications

    Get PDF
    The growing importance of signal integrity (SI) analysis in integrated circuits (ICs), revealed by modern systemin-package methods, is demanding for new models for the IC sub-systems which are both accurate, efficient and extractable by simple measurement procedures. This paper presents the contribution for the establishment of an integrated IC modeling approach whose performance is assessed by direct comparison with the signals measured in laboratory of two distinct memory IC devices. Based on the identification of the main blocks of a typical IC device, the modeling approach consists of a network of system-level sub-models, some of which with already demonstrated accuracy, which simulated the IC interfacing behavior. Emphasis is given to the procedures that were developed to validate by means of laboratory measurements (and not by comparison with circuit-level simulations) the model performance, which is a novel and important aspect that should be considered in the design of IC models that are useful for SI analysi

    Measurement, Modeling and Suppression of Substrate Noise in Wide Band Mixed-signal ICs

    Get PDF

    An effective AMS Top-Down Methodology Applied to the Design of a Mixed-SignalUWB System-on-Chip

    Get PDF
    The design of Ultra Wideband (UWB) mixed-signal SoC for localization applications in wireless personal area networks is currently investigated by several researchers. The complexity of the design claims for effective top-down methodologies. We propose a layered approach based on VHDL-AMS for the first design stages and on an intelligent use of a circuit-level simulator for the transistor-level phase. We apply the latter just to one block at a time and wrap it within the system-level VHDL-AMS description. This method allows to capture the impact of circuit-level design choices and non-idealities on system performance. To demonstrate the effectiveness of the methodology we show how the refinement of the design affects specific UWB system parameters such as bit-error rate and localization estimations

    The Future of High Frequency Circuit Design

    Get PDF
    The cut-off wavelengths of integrated silicon transistors have exceeded the die sizes of the chips being fabricated with them. Combined with the ability to integrate billions of transistors on the same die, this size-wavelength cross-over has produced a unique opportunity for a completely new class of holistic circuit design combining electromagnetics, device physics, circuits, and communication system theory in one place. In this paper, we discuss some of these opportunities and their associated challenges in greater detail and provide a few of examples of how they can be used in practice

    Analog/RF Circuit Design Techniques for Nanometerscale IC Technologies

    Get PDF
    CMOS evolution introduces several problems in analog design. Gate-leakage mismatch exceeds conventional matching tolerances requiring active cancellation techniques or alternative architectures. One strategy to deal with the use of lower supply voltages is to operate critical parts at higher supply voltages, by exploiting combinations of thin- and thick-oxide transistors. Alternatively, low voltage circuit techniques are successfully developed. In order to benefit from nanometer scale CMOS technology, more functionality is shifted to the digital domain, including parts of the RF circuits. At the same time, analog control for digital and digital control for analog emerges to deal with current and upcoming imperfections

    Impact of crosstalk into high resistivity silicon substrate on the RF performance of SOI MOSFET

    Get PDF
    Crosstalk propagation through silicon substrate is a serious limiting factor on the performance of the RF devices and circuits. In this work, substrate crosstalk into high resistivity silicon substrate is experimentally analyzed and the impact on the RF behavior of silicon-on-insulator (SOI) MOS transistors is discussed. The injection of a 10 V peak-to-peak single tone noise signal at a frequency of 3 MHz ( fnoise) generates two sideband tones of *−56 dBm separated by fnoise from the RF output signal of a partially depleted SOI MOSFET at 1 GHz and 4.1 dBm. The efficiency of the introduction of a trap-rich polysilicon layer located underneath the buried oxide (BOX) of the high resistivity (HR) SOI wafer in the reduction of the sideband noise tones is demonstrated. An equivalent circuit to model and analyze the generation of these sideband noise tones is proposed

    An Analytical Model for Spectral Peak Frequency Prediction of Substrate Noise in CMOS Substrates

    Get PDF
    corecore