2,305 research outputs found

    The potential of text mining in data integration and network biology for plant research : a case study on Arabidopsis

    Get PDF
    Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein-protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies

    An analysis of gene/protein associations at PubMed scale

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Event extraction following the GENIA Event corpus and BioNLP shared task models has been a considerable focus of recent work in biomedical information extraction. This work includes efforts applying event extraction methods to the entire PubMed literature database, far beyond the narrow subdomains of biomedicine for which annotated resources for extraction method development are available.</p> <p>Results</p> <p>In the present study, our aim is to estimate the coverage of all statements of gene/protein associations in PubMed that existing resources for event extraction can provide. We base our analysis on a recently released corpus automatically annotated for gene/protein entities and syntactic analyses covering the entire PubMed, and use named entity co-occurrence, shortest dependency paths and an unlexicalized classifier to identify likely statements of gene/protein associations. A set of high-frequency/high-likelihood association statements are then manually analyzed with reference to the GENIA ontology.</p> <p>Conclusions</p> <p>We present a first estimate of the overall coverage of gene/protein associations provided by existing resources for event extraction. Our results suggest that for event-type associations this coverage may be over 90%. We also identify several biologically significant associations of genes and proteins that are not addressed by these resources, suggesting directions for further extension of extraction coverage.</p

    Contextual Analysis of Large-Scale Biomedical Associations for the Elucidation and Prioritization of Genes and their Roles in Complex Disease

    Get PDF
    Vast amounts of biomedical associations are easily accessible in public resources, spanning gene-disease associations, tissue-specific gene expression, gene function and pathway annotations, and many other data types. Despite this mass of data, information most relevant to the study of a particular disease remains loosely coupled and difficult to incorporate into ongoing research. Current public databases are difficult to navigate and do not interoperate well due to the plethora of interfaces and varying biomedical concept identifiers used. Because no coherent display of data within a specific problem domain is available, finding the latent relationships associated with a disease of interest is impractical. This research describes a method for extracting the contextual relationships embedded within associations relevant to a disease of interest. After applying the method to a small test data set, a large-scale integrated association network is constructed for application of a network propagation technique that helps uncover more distant latent relationships. Together these methods are adept at uncovering highly relevant relationships without any a priori knowledge of the disease of interest. The combined contextual search and relevance methods power a tool which makes pertinent biomedical associations easier to find, easier to assimilate into ongoing work, and more prominent than currently available databases. Increasing the accessibility of current information is an important component to understanding high-throughput experimental results and surviving the data deluge
    • 

    corecore