9,523 research outputs found

    A Simple taxonomy for distributed mutual exclusion algorithms

    Get PDF
    Disponible dans les fichiers attachés à ce documen

    Permission-based fault tolerant mutual exclusion algorithm for mobile Ad Hoc networks

    Get PDF
    This study focuses on resolving the problem of mutual exclusion in mobile ad hoc networks. A Mobile Ad Hoc Network (MANET) is a wireless network without fixed infrastructure. Nodes are mobile and topology of MANET changes very frequently and unpredictably. Due to these limitations, conventional mutual exclusion algorithms presented for distributed systems (DS) are not applicable for MANETs unless they attach to a mechanism for dynamic changes in their topology. Algorithms for mutual exclusion in DS are categorized into two main classes including token-based and permission-based algorithms. Token-based algorithms depend on circulation of a specific message known as token. The owner of the token has priority for entering the critical section. Token may lose during communications, because of link failure or failure of token host. However, the processes for token-loss detection and token regeneration are very complicated and time-consuming. Token-based algorithms are generally non-fault-tolerant (although some mechanisms are utilized to increase their level of fault-tolerance) because of common problem of single token as a single point of failure. On the contrary, permission-based algorithms utilize the permission of multiple nodes to guarantee mutual exclusion. It yields to high traffic when number of nodes is high. Moreover, the number of message transmissions and energy consumption increase in MANET by increasing the number of mobile nodes accompanied in every decision making cycle. The purpose of this study is to introduce a method of managing the critical section,named as Ancestral, having higher fault-tolerance than token-based and fewer message transmissions and traffic rather that permission-based algorithms. This method makes a tradeoff between token-based and permission-based. It does not utilize any token, that is similar to permission-based, and the latest node having the critical section influences the entrance of the next node to the critical section, that is similar to token-based algorithms. The algorithm based on ancestral is named as DAD algorithms and increases the availability of fully connected network between 2.86 to 59.83% and decreases the number of message transmissions from 4j-2 to 3j messages (j as number of nodes in partition). This method is then utilized as the basis of dynamic ancestral mutual exclusion algorithm for MANET which is named as MDA. This algorithm is presented and evaluated for different scenarios of mobility of nodes, failure, load and number of nodes. The results of study show that MDA algorithm guarantees mutual exclusion,dead lock freedom and starvation freedom. It improves the availability of CS to minimum 154.94% and 113.36% for low load and high load of CS requests respectively compared to other permission-based lgorithm.Furthermore, it improves response time up to 90.69% for high load and 75.21% for low load of CS requests. It degrades the number of messages from n to 2 messages in the best case and from 3n/2 to n in the worst case. MDA algorithm is resilient to transient partitioning of network that is normally occurs due to failure of nodes or links

    A Taxonomy of Daemons in Self-stabilization

    Full text link
    We survey existing scheduling hypotheses made in the literature in self-stabilization, commonly referred to under the notion of daemon. We show that four main characteristics (distribution, fairness, boundedness, and enabledness) are enough to encapsulate the various differences presented in existing work. Our naming scheme makes it easy to compare daemons of particular classes, and to extend existing possibility or impossibility results to new daemons. We further examine existing daemon transformer schemes and provide the exact transformed characteristics of those transformers in our taxonomy.Comment: 26 page

    Theory of systems of asynchronous parallel processors

    Get PDF
    Issued as Progress report and Final report, Project no. G-36-63

    An Order-Based, Distributed Algorithm for Implementing Multiparty Interactions

    Get PDF
    Multiparty interactions have been paid much attention in recent years because they provide the user with a useful mechanism for coordinating a number of entities that need to cooperate in order to achieve a common goal. In this paper, we present an algorithm for implementing them that is based on the idea of locking resources in a given order. It improves on previous results in that it can be used in a context in which the set of participants in an interaction cannot be known at compile time, and setting up communication links amongst interaction managers is costly or completely impossible

    Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

    Get PDF
    While monolithic satellite missions still pose significant advantages in terms of accuracy and operations, novel distributed architectures are promising improved flexibility, responsiveness, and adaptability to structural and functional changes. Large satellite swarms, opportunistic satellite networks or heterogeneous constellations hybridizing small-spacecraft nodes with highperformance satellites are becoming feasible and advantageous alternatives requiring the adoption of new operation paradigms that enhance their autonomy. While autonomy is a notion that is gaining acceptance in monolithic satellite missions, it can also be deemed an integral characteristic in Distributed Satellite Systems (DSS). In this context, this paper focuses on the motivations for system-level autonomy in DSS and justifies its need as an enabler of system qualities. Autonomy is also presented as a necessary feature to bring new distributed Earth observation functions (which require coordination and collaboration mechanisms) and to allow for novel structural functions (e.g., opportunistic coalitions, exchange of resources, or in-orbit data services). Mission Planning and Scheduling (MPS) frameworks are then presented as a key component to implement autonomous operations in satellite missions. An exhaustive knowledge classification explores the design aspects of MPS for DSS, and conceptually groups them into: components and organizational paradigms; problem modeling and representation; optimization techniques and metaheuristics; execution and runtime characteristics and the notions of tasks, resources, and constraints. This paper concludes by proposing future strands of work devoted to study the trade-offs of autonomy in large-scale, highly dynamic and heterogeneous networks through frameworks that consider some of the limitations of small spacecraft technologies.Postprint (author's final draft

    Currency management system: a distributed banking service for the grid

    Get PDF
    Market based resource allocation mechanisms require mechanisms to regulate and manage the usage of traded resources. One mechanism to control this is the definition of some kind of currency. Within this context, we have implemented a first prototype of our Currency Management System, which stands for a decentralized and scalable banking service for the Grid. Basically, our system stores user accounts within a DHT and its basic operation is the transferFunds which, as its name suggests, transfers virtual currency from an account to one another

    (h,k)-Arbiters for h-out-of-k mutual exclusion problem

    Get PDF
    Abstracth-Out-of-k mutual exclusion is a generalization of the 1-mutual exclusion problem, where there are k units of shared resources and each process requests h(1⩽h⩽k) units at the same time. Though k-arbiter has been shown to be a quorum-based solution to this problem, quorums in k-arbiter are much larger than those in the 1-coterie for 1-mutual exclusion. Thus, the algorithm based on k-arbiter needs many messages. This paper introduces the new notion that each request uses different quorums depending on the number of units of its request. Based on the notion, this paper defines two (h,k)-arbiters for h-out-of-k mutual exclusion: a uniform (h,k)-arbiter and a (k+1)-cube (h,k)-arbiter. The quorums in each (h,k)-arbiter are not larger than the ones in the corresponding k-arbiter; consequently, it is more efficient to use (h,k)-arbiters than the k-arbiters. A uniform (h,k)-arbiter is a generalization of the majority coterie for 1-mutual exclusion. A (k+1)-cube (h,k)-arbiter is a generalization of square grid coterie for 1-mutual exclusion

    Tools for distributed application management

    Get PDF
    Distributed application management consists of monitoring and controlling an application as it executes in a distributed environment. It encompasses such activities as configuration, initialization, performance monitoring, resource scheduling, and failure response. The Meta system is described: a collection of tools for constructing distributed application management software. Meta provides the mechanism, while the programmer specifies the policy for application management. The policy is manifested as a control program which is a soft real time reactive program. The underlying application is instrumented with a variety of built-in and user defined sensors and actuators. These define the interface between the control program and the application. The control program also has access to a database describing the structure of the application and the characteristics of its environment. Some of the more difficult problems for application management occur when pre-existing, nondistributed programs are integrated into a distributed application for which they may not have been intended. Meta allows management functions to be retrofitted to such programs with a minimum of effort
    corecore