32,426 research outputs found

    Design and analysis of a distributed ECDSA signing service

    Get PDF
    We present and analyze a new protocol that provides a distributed ECDSA signing service, with the following properties: * it works in an asynchronous communication model; * it works with nn parties with up to f<n/3f < n/3 Byzantine corruptions; * it provides guaranteed output delivery; * it provides a very efficient, non-interactive online signing phase; * it supports additive key derivation according to the BIP32 standard. While there has been a flurry of recent research on distributed ECDSA signing protocols, none of these newly designed protocols provides guaranteed output delivery over an asynchronous communication network; moreover, the performance of our protocol (in terms of asymptotic communication and computational complexity) meets or beats the performance of any of these other protocols. This service is being implemented and integrated into the architecture of the Internet Computer, enabling smart contracts running on the Internet Computer to securely hold and spend Bitcoin and other cryptocurrencies. Along the way, we present some results of independent interest: * a new asynchronous verifiable secret sharing (AVSS) scheme that is simple and efficient; * a new scheme for multi-recipient encryption that is simple and efficient

    Instantaneous Decentralized Poker

    Get PDF
    We present efficient protocols for amortized secure multiparty computation with penalties and secure cash distribution, of which poker is a prime example. Our protocols have an initial phase where the parties interact with a cryptocurrency network, that then enables them to interact only among themselves over the course of playing many poker games in which money changes hands. The high efficiency of our protocols is achieved by harnessing the power of stateful contracts. Compared to the limited expressive power of Bitcoin scripts, stateful contracts enable richer forms of interaction between standard secure computation and a cryptocurrency. We formalize the stateful contract model and the security notions that our protocols accomplish, and provide proofs using the simulation paradigm. Moreover, we provide a reference implementation in Ethereum/Solidity for the stateful contracts that our protocols are based on. We also adopt our off-chain cash distribution protocols to the special case of stateful duplex micropayment channels, which are of independent interest. In comparison to Bitcoin based payment channels, our duplex channel implementation is more efficient and has additional features

    BlockPKI: An Automated, Resilient, and Transparent Public-Key Infrastructure

    Full text link
    This paper describes BlockPKI, a blockchain-based public-key infrastructure that enables an automated, resilient, and transparent issuance of digital certificates. Our goal is to address several shortcomings of the current TLS infrastructure and its proposed extensions. In particular, we aim at reducing the power of individual certification authorities and make their actions publicly visible and accountable, without introducing yet another trusted third party. To demonstrate the benefits and practicality of our system, we present evaluation results and describe our prototype implementation.Comment: Workshop on Blockchain and Sharing Economy Application

    Chainspace: A Sharded Smart Contracts Platform

    Full text link
    Chainspace is a decentralized infrastructure, known as a distributed ledger, that supports user defined smart contracts and executes user-supplied transactions on their objects. The correct execution of smart contract transactions is verifiable by all. The system is scalable, by sharding state and the execution of transactions, and using S-BAC, a distributed commit protocol, to guarantee consistency. Chainspace is secure against subsets of nodes trying to compromise its integrity or availability properties through Byzantine Fault Tolerance (BFT), and extremely high-auditability, non-repudiation and `blockchain' techniques. Even when BFT fails, auditing mechanisms are in place to trace malicious participants. We present the design, rationale, and details of Chainspace; we argue through evaluating an implementation of the system about its scaling and other features; we illustrate a number of privacy-friendly smart contracts for smart metering, polling and banking and measure their performance
    corecore