44 research outputs found

    Eliminating Recursion from Monadic Datalog Programs on Trees

    Full text link
    We study the problem of eliminating recursion from monadic datalog programs on trees with an infinite set of labels. We show that the boundedness problem, i.e., determining whether a datalog program is equivalent to some nonrecursive one is undecidable but the decidability is regained if the descendant relation is disallowed. Under similar restrictions we obtain decidability of the problem of equivalence to a given nonrecursive program. We investigate the connection between these two problems in more detail

    Queries with Guarded Negation (full version)

    Full text link
    A well-established and fundamental insight in database theory is that negation (also known as complementation) tends to make queries difficult to process and difficult to reason about. Many basic problems are decidable and admit practical algorithms in the case of unions of conjunctive queries, but become difficult or even undecidable when queries are allowed to contain negation. Inspired by recent results in finite model theory, we consider a restricted form of negation, guarded negation. We introduce a fragment of SQL, called GN-SQL, as well as a fragment of Datalog with stratified negation, called GN-Datalog, that allow only guarded negation, and we show that these query languages are computationally well behaved, in terms of testing query containment, query evaluation, open-world query answering, and boundedness. GN-SQL and GN-Datalog subsume a number of well known query languages and constraint languages, such as unions of conjunctive queries, monadic Datalog, and frontier-guarded tgds. In addition, an analysis of standard benchmark workloads shows that most usage of negation in SQL in practice is guarded negation

    The Complexity of Datalog on Linear Orders

    Full text link
    We study the program complexity of datalog on both finite and infinite linear orders. Our main result states that on all linear orders with at least two elements, the nonemptiness problem for datalog is EXPTIME-complete. While containment of the nonemptiness problem in EXPTIME is known for finite linear orders and actually for arbitrary finite structures, it is not obvious for infinite linear orders. It sharply contrasts the situation on other infinite structures; for example, the datalog nonemptiness problem on an infinite successor structure is undecidable. We extend our upper bound results to infinite linear orders with constants. As an application, we show that the datalog nonemptiness problem on Allen's interval algebra is EXPTIME-complete.Comment: 21 page

    Evaluating Datalog via Tree Automata and Cycluits

    Full text link
    We investigate parameterizations of both database instances and queries that make query evaluation fixed-parameter tractable in combined complexity. We show that clique-frontier-guarded Datalog with stratified negation (CFG-Datalog) enjoys bilinear-time evaluation on structures of bounded treewidth for programs of bounded rule size. Such programs capture in particular conjunctive queries with simplicial decompositions of bounded width, guarded negation fragment queries of bounded CQ-rank, or two-way regular path queries. Our result is shown by translating to alternating two-way automata, whose semantics is defined via cyclic provenance circuits (cycluits) that can be tractably evaluated.Comment: 56 pages, 63 references. Journal version of "Combined Tractability of Query Evaluation via Tree Automata and Cycluits (Extended Version)" at arXiv:1612.04203. Up to the stylesheet, page/environment numbering, and possible minor publisher-induced changes, this is the exact content of the journal paper that will appear in Theory of Computing Systems. Update wrt version 1: latest reviewer feedbac

    Regular Queries on Graph Databases

    Get PDF
    Graph databases are currently one of the most popular paradigms for storing data. One of the key conceptual differences between graph and relational databases is the focus on navigational queries that ask whether some nodes are connected by paths satisfying certain restrictions. This focus has driven the definition of several different query languages and the subsequent study of their fundamental properties. We define the graph query language of Regular Queries, which is a natural extension of unions of conjunctive 2-way regular path queries (UC2RPQs) and unions of conjunctive nested 2-way regular path queries (UCN2RPQs). Regular queries allow expressing complex regular patterns between nodes. We formalize regular queries as nonrecursive Datalog programs with transitive closure rules. This language has been previously considered, but its algorithmic properties are not well understood. Our main contribution is to show elementary tight bounds for the containment problem for regular queries. Specifically, we show that this problem is 2EXPSPACE-complete. For all extensions of regular queries known to date, the containment problem turns out to be non-elementary. Together with the fact that evaluating regular queries is not harder than evaluating UCN2RPQs, our results show that regular queries achieve a good balance between expressiveness and complexity, and constitute a well-behaved class that deserves further investigation

    Querying Schemas With Access Restrictions

    Full text link
    We study verification of systems whose transitions consist of accesses to a Web-based data-source. An access is a lookup on a relation within a relational database, fixing values for a set of positions in the relation. For example, a transition can represent access to a Web form, where the user is restricted to filling in values for a particular set of fields. We look at verifying properties of a schema describing the possible accesses of such a system. We present a language where one can describe the properties of an access path, and also specify additional restrictions on accesses that are enforced by the schema. Our main property language, AccLTL, is based on a first-order extension of linear-time temporal logic, interpreting access paths as sequences of relational structures. We also present a lower-level automaton model, Aautomata, which AccLTL specifications can compile into. We show that AccLTL and A-automata can express static analysis problems related to "querying with limited access patterns" that have been studied in the database literature in the past, such as whether an access is relevant to answering a query, and whether two queries are equivalent in the accessible data they can return. We prove decidability and complexity results for several restrictions and variants of AccLTL, and explain which properties of paths can be expressed in each restriction.Comment: VLDB201
    corecore