11,678 research outputs found

    A SIMPLE NUMERICAL METHOD FOR COMPLEX GEOMETRICAL OPTICS SOLUTIONS TO THE CONDUCTIVITY EQUATION

    Get PDF
    This paper concerns numerical methods for computing complex geometrical optics (CGO) solutions to the conductivity equation del . sigma del u(., k) = 0 in R(2) for piecewise smooth conductivities sigma, where k is a complex parameter. The key is to solve an R-linear singular integral equation defined in the unit disk. Recently, Astala et al. [Appl. Comput. Harmon. Anal., 29 (2010), pp. 2-17] proposed a complicated method for numerical computation of CGO solutions by solving a periodic version of the R-linear integral equation in a rectangle containing the unit disk. In this paper, based on the fast algorithms in [P. Daripa and D. Mashat, Numer. Algorithms, 18 (1998), pp. 133-157] for singular integral transforms, we propose a simpler numerical method which solves the R-linear integral equation in the unit disk directly. For the resulting R-linear operator equation, a minimal residual iterative method is proposed. Numerical examples illustrate the accuracy and efficiency of the new method

    Surface electrical properties experiment. Part 2: Theory of radio-frequency interferometry in geophysical subsurface probing

    Get PDF
    The radiation fields due to a horizontal electric dipole laid on the surface of a stratified medium were calculated using a geometrical optics approximation, a modal approach, and direct numerical integration. The solutions were obtained from the reflection coefficient formulation and written in integral forms. The calculated interference patterns are compared in terms of the usefulness of the methods used to obtain them. Scattering effects are also discussed and all numerical results for anisotropic and isotropic cases are presented

    Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation and Experimentation

    Full text link
    Among the many additive manufacturing (AM) processes for metallic materials, selective laser melting (SLM) is arguably the most versatile in terms of its potential to realize complex geometries along with tailored microstructure. However, the complexity of the SLM process, and the need for predictive relation of powder and process parameters to the part properties, demands further development of computational and experimental methods. This review addresses the fundamental physical phenomena of SLM, with a special emphasis on the associated thermal behavior. Simulation and experimental methods are discussed according to three primary categories. First, macroscopic approaches aim to answer questions at the component level and consider for example the determination of residual stresses or dimensional distortion effects prevalent in SLM. Second, mesoscopic approaches focus on the detection of defects such as excessive surface roughness, residual porosity or inclusions that occur at the mesoscopic length scale of individual powder particles. Third, microscopic approaches investigate the metallurgical microstructure evolution resulting from the high temperature gradients and extreme heating and cooling rates induced by the SLM process. Consideration of physical phenomena on all of these three length scales is mandatory to establish the understanding needed to realize high part quality in many applications, and to fully exploit the potential of SLM and related metal AM processes

    Reconstruction of less regular conductivities in the plane

    Full text link
    We study the inverse conductivity problem of how to reconstruct an isotropic electrical conductivity distribution γ\gamma in an object from static electrical measurements on the boundary of the object. We give an exact reconstruction algorithm for the conductivity \gamma\in C^{1+\epsilon}(\ol \Om) in the plane domain Ω\Omega from the associated Dirichlet to Neumann map on \partial \Om. Hence we improve earlier reconstruction results. The method used relies on a well-known reduction to a first order system, for which the \ol\partial-method of inverse scattering theory can be applied
    corecore