49,535 research outputs found

    The VITEWRITE Model of Handwriting Production

    Full text link
    This article describes the VITEWRITE model for generating handwriting movements. The model consists of a sequential controller, or motor program, that interacts with a trajectory generator to move a hand with redundant degrees of freedom. The neural trajectory generator is the Vector Integration to Endpoint (VITE) model for synchronous variable-speed control of multijoint movements. VITE properties enable a simple control strategy to generate complex handwritten script if the hand model contains redundant degrees of freedom. The controller launches transient directional commands to independent hand synergies at times when the hand begins to move, or when a velocity peak in the outflow command to a given synergy occurs. The VITE model translates these temporally disjoint synergy commands into smooth curvilinear trajectories among temporally overlapping synergetic movements. Each synergy exhibits a unimodal velocity profile during any stroke, generates letters that are invariant under speed and size rescaling, and enables effortless connection of letter shapes into words. Speed and size rescaling are achieved by scalar GO and GRO signals that express computationally simple volitional commands. Psychophysical data such as the isochrony principle, asymmetric velocity profiles, and the two-thirds power law relating movement curvature and velocity arise as emergent properties of model interactions.Office of Naval Research (N00014-92-J-1309); National Science Foundation (IRI-90-24877, IRI-87-16960); Air Force Office of Scientific Research (F49620-92-J-0225); Defense Advanced Research Projects Agency (AFOSR 90-0083

    A Neural Network Model for Cursive Script Production

    Full text link
    This article describes a neural network model, called the VITEWRITE model, for generating handwriting movements. The model consists of a sequential controller, or motor program, that interacts with a trajectory generator to move a. hand with redundant degrees of freedom. The neural trajectory generator is the Vector Integration to Endpoint (VITE) model for synchronous variable-speed control of multijoint movements. VITE properties enable a simple control strategy to generate complex handwritten script if the hand model contains redundant degrees of freedom. The proposed controller launches transient directional commands to independent hand synergies at times when the hand begins to move, or when a velocity peak in a given synergy is achieved. The VITE model translates these temporally disjoint synergy commands into smooth curvilinear trajectories among temporally overlapping synergetic movements. The separate "score" of onset times used in most prior models is hereby replaced by a self-scaling activity-released "motor program" that uses few memory resources, enables each synergy to exhibit a unimodal velocity profile during any stroke, generates letters that are invariant under speed and size rescaling, and enables effortless. connection of letter shapes into words. Speed and size rescaling are achieved by scalar GO and GRO signals that express computationally simple volitional commands. Psychophysical data concerning band movements, such as the isochrony principle, asymmetric velocity profiles, and the two-thirds power law relating movement curvature and velocity arise as emergent properties of model interactions.National Science Foundation (IRI 90-24877, IRI 87-16960); Office of Naval Research (N00014-92-J-1309); Air Force Office of Scientific Research (F49620-92-J-0499); Defense Advanced Research Projects Agency (90-0083

    A not-so-simple view of adolescent writing

    Get PDF
    According to the Simple View of Writing, four primary skills are necessary for successful writing (Berninger & Amtmann, 2003; Berninger & Winn, 2006). Transcription skills (e.g., handwriting, spelling) represent lower-order cognitive tasks, whereas text generation skills (e.g., ideation, translation) represent higher-order writing/cognitive abilities. Self-regulatory executive functions include the attentional and regulatory abilities that help manage the writing process, and working memory represents the cognitive complexity of the writing process. Exploratory factor analysis was used to explore the relations amongst the components of the Simple View of Writing. A one-way ANOVA tested for differences between struggling and non-struggling writers on the observed variables. Results revealed a two-factor model, suggesting writing is more multidimensional. Statistically significant differences were observed between struggling and non-struggling writers on all measures except the Behavior Rating Inventory of Executive Function – Self-Report and the Graphic Speed task of the Detailed Assessment of Speed of Handwriting

    Style Transfer and Extraction for the Handwritten Letters Using Deep Learning

    Full text link
    How can we learn, transfer and extract handwriting styles using deep neural networks? This paper explores these questions using a deep conditioned autoencoder on the IRON-OFF handwriting data-set. We perform three experiments that systematically explore the quality of our style extraction procedure. First, We compare our model to handwriting benchmarks using multidimensional performance metrics. Second, we explore the quality of style transfer, i.e. how the model performs on new, unseen writers. In both experiments, we improve the metrics of state of the art methods by a large margin. Lastly, we analyze the latent space of our model, and we see that it separates consistently writing styles.Comment: Accepted in ICAART 201

    Attentive Learning of Sequential Handwriting Movements: A Neural Network Model

    Full text link
    Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-1309); National Science Foundation (IRI-97-20333); National Institutes of Health (I-R29-DC02952-01)
    • …
    corecore