1,156 research outputs found

    Reasoning about Independence in Probabilistic Models of Relational Data

    Full text link
    We extend the theory of d-separation to cases in which data instances are not independent and identically distributed. We show that applying the rules of d-separation directly to the structure of probabilistic models of relational data inaccurately infers conditional independence. We introduce relational d-separation, a theory for deriving conditional independence facts from relational models. We provide a new representation, the abstract ground graph, that enables a sound, complete, and computationally efficient method for answering d-separation queries about relational models, and we present empirical results that demonstrate effectiveness.Comment: 61 pages, substantial revisions to formalisms, theory, and related wor

    Inferring dynamic genetic networks with low order independencies

    Full text link
    In this paper, we propose a novel inference method for dynamic genetic networks which makes it possible to face with a number of time measurements n much smaller than the number of genes p. The approach is based on the concept of low order conditional dependence graph that we extend here in the case of Dynamic Bayesian Networks. Most of our results are based on the theory of graphical models associated with the Directed Acyclic Graphs (DAGs). In this way, we define a minimal DAG G which describes exactly the full order conditional dependencies given the past of the process. Then, to face with the large p and small n estimation case, we propose to approximate DAG G by considering low order conditional independencies. We introduce partial qth order conditional dependence DAGs G(q) and analyze their probabilistic properties. In general, DAGs G(q) differ from DAG G but still reflect relevant dependence facts for sparse networks such as genetic networks. By using this approximation, we set out a non-bayesian inference method and demonstrate the effectiveness of this approach on both simulated and real data analysis. The inference procedure is implemented in the R package 'G1DBN' freely available from the CRAN archive

    Protein (Multi-)Location Prediction: Using Location Inter-Dependencies in a Probabilistic Framework

    Full text link
    Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins, assuming that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems have attempted to predict multiple locations of proteins, they typically treat locations as independent or capture inter-dependencies by treating each locations-combination present in the training set as an individual location-class. We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the multiple-location-prediction process, using a collection of Bayesian network classifiers. We evaluate our system on a dataset of single- and multi-localized proteins. Our results, obtained by incorporating inter-dependencies are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without restricting predictions to be based only on location-combinations present in the training set.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013
    • …
    corecore