1,369 research outputs found

    A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed Measurements

    Get PDF
    When a passive microwave footprint intersects objects on the ground with different spectral characteristics, the corresponding observation is mixed. The retrieval of geophysical parameters is limited by this mixture. We propose to partition the study region into objects following an object-based image analysis procedure and then to refine this partition into small cells. Then, we introduce a statistical method to estimate the brightness temperature (TB) of each cell. The method assumes that TB of the cells corresponding to the same object is identically distributed and that the TB heterogeneity within each cell can be neglected. The implementation is based on an iterative expectation-maximization algorithm. We evaluated the proposed method using synthetic images and applied it to grid the TBs of sample AMSR -2 real data over a coastal region in Argentina.Fil: Grimson, Rafael. Universidad Nacional de San MartĂ­n; ArgentinaFil: Bali, Juan Lucas. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Rajngewerc, Mariela. Ministerio de Defensa. Instituto de Investigaciones CientĂ­ficas y TĂ©cnicas para la Defensa; ArgentinaFil: Martin, Laura San. Universidad Nacional de San MartĂ­n; ArgentinaFil: Salvia, Maria Mercedes. Universidad Nacional de San MartĂ­n; Argentina. Consejo Nacional de InvestigaciĂłnes CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂ­a y FĂ­sica del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de AstronomĂ­a y FĂ­sica del Espacio; Argentin

    Remote sensing observatory validation of surface soil moisture using Advanced Microwave Scanning Radiometer E, Common Land Model, and ground based data: Case study in SMEX03 Little River Region, Georgia, U.S.

    Get PDF
    Optimal soil moisture estimation may be characterized by intercomparisons among remotely sensed measurements, ground‐based measurements, and land surface models. In this study, we compared soil moisture from Advanced Microwave Scanning Radiometer E (AMSR‐E), ground‐based measurements, and a Soil‐Vegetation‐Atmosphere Transfer (SVAT) model for the Soil Moisture Experiments in 2003 (SMEX03) Little River region, Georgia. The Common Land Model (CLM) reasonably replicated soil moisture patterns in dry down and wetting after rainfall though it had modest wet biases (0.001–0.054 m3/m3) as compared to AMSR‐E and ground data. While the AMSR‐E average soil moisture agreed well with the other data sources, it had extremely low temporal variability, especially during the growing season from May to October. The comparison results showed that highest mean absolute error (MAE) and root mean squared error (RMSE) were 0.054 and 0.059 m3/m3 for short and long periods, respectively. Even if CLM and AMSR‐E had complementary strengths, low MAE (0.018–0.054 m3/m3) and RMSE (0.023–0.059 m3/m3) soil moisture errors for CLM and soil moisture low biases (0.003–0.031 m3/m3) for AMSR‐E, care should be taken prior to employing AMSR‐E retrieved soil moisture products directly for hydrological application due to its failure to replicate temporal variability. AMSR‐E error characteristics identified in this study should be used to guide enhancement of retrieval algorithms and improve satellite observations for hydrological sciences

    Multiscale assimilation of Advanced Microwave Scanning Radiometer-EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado

    Get PDF
    Eight years (2002–2010) of Advanced Microwave Scanning Radiometer–EOS (AMSR-E) snow water equivalent (SWE) retrievals and Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) observations are assimilated separately or jointly into the Noah land surface model over a domain in Northern Colorado. A multiscale ensemble Kalman filter (EnKF) is used, supplemented with a rule-based update. The satellite data are either left unscaled or are scaled for anomaly assimilation. The results are validated against in situ observations at 14 high-elevation Snowpack Telemetry (SNOTEL) sites with typically deep snow and at 4 lower-elevation Cooperative Observer Program (COOP) sites. Assimilation of coarse-scale AMSR-E SWE and fine-scale MODIS SCF observations both result in realistic spatial SWE patterns. At COOP sites with shallow snowpacks, AMSR-E SWE and MODIS SCF data assimilation are beneficial separately, and joint SWE and SCF assimilation yields significantly improved root-mean-square error and correlation values for scaled and unscaled data assimilation. In areas of deep snow where the SNOTEL sites are located, however, AMSR-E retrievals are typically biased low and assimilation without prior scaling leads to degraded SWE estimates. Anomaly SWE assimilation could not improve the interannual SWE variations in the assimilation results because the AMSR-E retrievals lack realistic interannual variability in deep snowpacks. SCF assimilation has only a marginal impact at the SNOTEL locations because these sites experience extended periods of near-complete snow cover. Across all sites, SCF assimilation improves the timing of the onset of the snow season but without a net improvement of SWE amounts

    The effects of variation in snow properties on passive microwave snow mass estimation

    Get PDF
    Estimating snow mass at continental scales is difficult, but important for understanding land-atmosphere interactions, biogeochemical cycles and the hydrology of the Northern latitudes. Remote sensing provides the only consistent global observations, butwith unknown errors. Wetest the theoretical performance of the Chang algorithm for estimating snow mass from passive microwave measurements using the Helsinki University of Technology (HUT) snow microwave emission model. The algorithm's dependence upon assumptions of fixed and uniform snow density and grainsize is determined, and measurements of these properties made at the Cold Land Processes Experiment (CLPX) Colorado field site in 2002–2003 used to quantify the retrieval errors caused by differences between the algorithm assumptions and measurements. Deviation from the Chang algorithm snow density and grainsize assumptions gives rise to an error of a factor of between two and three in calculating snow mass. The possibility that the algorithm performsmore accurately over large areas than at points is tested by simulating emission from a 25 km diameter area of snow with a distribution of properties derived from the snow pitmeasurements, using the Chang algorithm to calculate mean snow-mass from the simulated emission. The snowmass estimation froma site exhibiting the heterogeneity of the CLPX Colorado site proves onlymarginally different than that from a similarly-simulated homogeneous site. The estimation accuracy predictions are tested using the CLPX field measurements of snow mass, and simultaneous SSM/I and AMSR-E measurements

    Global soil moisture bimodality in satellite observations and climate models

    Get PDF
    A new diagnostic metric based on soil moisture bimodality is developed in order to examine and compare soil moisture from satellite observations and Earth System Models. The methodology to derive this diagnostic is based on maximum likelihood estimator encoded into an iterative algorithm, which is applied to the soil moisture probability density function. This metric is applied to satellite data from the Advanced Microwave Scanning Radiometer for the Earth Observing System and global climate models data from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Results show high soil moisture bimodality in transitional climate areas and high latitudes, potentially associated with land-atmosphere feedback processes. When comparing satellite versus climate models, a clear difference in their soil moisture bimodality is observed, with systematically higher values in the case of CMIP5 models. These differences appear related to areas where land-atmospheric feedback may be overestimated in current climate models

    Temporal Variability Corrections for Advanced Microwave Scanning Radiometer E (AMSR-E) Surface Soil Moisture: Case Study in Little River Region, Georgia, U.S.

    Get PDF
    Statistical correction methods, the Cumulative Distribution Function (CDF) matching technique and Regional Statistics Method (RSM) are applied to adjust the limited temporal variability of Advanced Microwave Scanning Radiometer E (AMSR-E) data using the Common Land Model (CLM). The temporal variability adjustment between CLM and AMSR-E data was conducted for annual and seasonal periods for 2003 in the Little River region, GA. The results showed that the statistical correction techniques improved AMSR-E’s limited temporal variability as compared to ground-based measurements. The regression slope and intercept improved from 0.210 and 0.112 up to 0.971 and -0.005 for the non-growing season. The R2 values also modestly improved. The Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) products were able to identify periods having an attenuated microwave brightness signal that are not likely to benefit from these statistical correction techniques

    Temporal variability corrections for Advanced Microwave Scanning Radiometer E (AMSR-E) surface soil moisture: case study in Little River Region, Georgia, U. S.

    Get PDF
    Statistical correction methods, the Cumulative Distribution Function (CDF) matching technique and Regional Statistics Method (RSM) are applied to adjust the limited temporal variability of Advanced Microwave Scanning Radiometer E (AMSR-E) data using the Common Land Model (CLM). The temporal variability adjustment between CLM and AMSR-E data was conducted for annual and seasonal periods for 2003 in the Little River region, GA. The results showed that the statistical correction techniques improved AMSR-E\u27s limited temporal variability as compared to ground-based measurements. The regression slope and intercept improved from 0.210 and 0.112 up to 0.971 and -0.005 for the non-growing season. The R-2 values also modestly improved. The Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) products were able to identify periods having an attenuated microwave brightness signal that are not likely to benefit from these statistical correction techniques

    Improvement and Sensitivity Analysis of Thermal Thin-Ice Thickness Retrievals

    Get PDF
    Considering the sea ice decline in the Arctic during the last decades, polynyas are of high research interest since these features are core areas of new ice formation. The determination of ice formation requires accurate retrieval of polynya area and thin-ice thickness (TIT) distribution within the polynya. We use an established energy balance model to derive TITs with MODIS ice surface temperatures (Ts)(T_{s}) and NCEP/DOE Reanalysis II in the Laptev Sea for two winter seasons. Improvements of the algorithm mainly concern the implementation of an iterative approach to calculate the atmospheric flux components taking the atmospheric stratification into account. Furthermore, a sensitivity study is performed to analyze the errors of the ice thickness. The results are the following: 1) 2-m air temperatures (Ta)(T_{a}) and TsT_{s} have the highest impact on the retrieved ice thickness; 2) an overestimation of TaT_{a} yields smaller ice thickness errors as an underestimation of TaT_{a}; 3) NCEP TaT_{a} shows often a warm bias; and 4) the mean absolute error for ice thicknesses up to 20 cm is pmpm4.7 cm. Based on these results, we conclude that, despite the shortcomings of the NCEP data (coarse spatial resolution and no polynyas), this data set is appropriate in combination with MODIS TsT_{s} for the retrieval of TITs up to 20 cm in the Laptev Sea region. The TIT algorithm can be applied to other polynya regions and to past and future time periods. Our TIT product is a valuable data set for verification of other model and remote sensing ice thickness data
    • 

    corecore