92,032 research outputs found

    Binary Classifier Calibration using an Ensemble of Near Isotonic Regression Models

    Full text link
    Learning accurate probabilistic models from data is crucial in many practical tasks in data mining. In this paper we present a new non-parametric calibration method called \textit{ensemble of near isotonic regression} (ENIR). The method can be considered as an extension of BBQ, a recently proposed calibration method, as well as the commonly used calibration method based on isotonic regression. ENIR is designed to address the key limitation of isotonic regression which is the monotonicity assumption of the predictions. Similar to BBQ, the method post-processes the output of a binary classifier to obtain calibrated probabilities. Thus it can be combined with many existing classification models. We demonstrate the performance of ENIR on synthetic and real datasets for the commonly used binary classification models. Experimental results show that the method outperforms several common binary classifier calibration methods. In particular on the real data, ENIR commonly performs statistically significantly better than the other methods, and never worse. It is able to improve the calibration power of classifiers, while retaining their discrimination power. The method is also computationally tractable for large scale datasets, as it is O(Nlog⁥N)O(N \log N) time, where NN is the number of samples

    Machine Learning Playground

    Get PDF
    Machine learning is a science that “learns” about the data by finding unique patterns and relations in the data. There are a lot of libraries or tools available for processing machine learning datasets. You can upload your dataset in seconds and quickly start using these tools to get prediction results in a few minutes. However, generating an optimal model is a time consuming and tedious task. The tunable parameters (hyper-parameters) of any machine learning model may greatly affect the accuracy metrics. While most of the tools have models with default parameter setting to provide good results, they can often fail to provide optimal results for reallife datasets. This project will be to develop a GUI application where a user could upload a dataset and dynamically visualize accuracy results based on the selected algorithm and its hyperparameters

    Parameter Tuning Using Gaussian Processes

    Get PDF
    Most machine learning algorithms require us to set up their parameter values before applying these algorithms to solve problems. Appropriate parameter settings will bring good performance while inappropriate parameter settings generally result in poor modelling. Hence, it is necessary to acquire the “best” parameter values for a particular algorithm before building the model. The “best” model not only reflects the “real” function and is well fitted to existing points, but also gives good performance when making predictions for new points with previously unseen values. A number of methods exist that have been proposed to optimize parameter values. The basic idea of all such methods is a trial-and-error process whereas the work presented in this thesis employs Gaussian process (GP) regression to optimize the parameter values of a given machine learning algorithm. In this thesis, we consider the optimization of only two-parameter learning algorithms. All the possible parameter values are specified in a 2-dimensional grid in this work. To avoid brute-force search, Gaussian Process Optimization (GPO) makes use of “expected improvement” to pick useful points rather than validating every point of the grid step by step. The point with the highest expected improvement is evaluated using cross-validation and the resulting data point is added to the training set for the Gaussian process model. This process is repeated until a stopping criterion is met. The final model is built using the learning algorithm based on the best parameter values identified in this process. In order to test the effectiveness of this optimization method on regression and classification problems, we use it to optimize parameters of some well-known machine learning algorithms, such as decision tree learning, support vector machines and boosting with trees. Through the analysis of experimental results obtained on datasets from the UCI repository, we find that the GPO algorithm yields competitive performance compared with a brute-force approach, while exhibiting a distinct advantage in terms of training time and number of cross-validation runs. Overall, the GPO method is a promising method for the optimization of parameter values in machine learning
    • 

    corecore