55 research outputs found

    Parameterized Complexity of 1-Planarity

    Full text link
    We consider the problem of finding a 1-planar drawing for a general graph, where a 1-planar drawing is a drawing in which each edge participates in at most one crossing. Since this problem is known to be NP-hard we investigate the parameterized complexity of the problem with respect to the vertex cover number, tree-depth, and cyclomatic number. For these parameters we construct fixed-parameter tractable algorithms. However, the problem remains NP-complete for graphs of bounded bandwidth, pathwidth, or treewidth.Comment: WADS 201

    Algorithms for graphs of small treewidth

    Get PDF
    Veel problemen uit de praktijk kunnen worden gemodelleerd als optimaliserings- of beslis-singsproblemen op grafen. Denk bijvoorbeeld aan het probleem waarbij een koerier een aantal pakketjes moet afleveren op verschillende adressen in het land. De manager van de koerier wil dat hij een zo kort mogelijke route aflegt die begint en eindigt bij het koeriers-bedrijf, en die alle adressen aandoet. Het probleem om zo n kortste route te vinden is het zogenaamde handelsreizigersprobleem. De invoer kan worden gemodelleerd als een graaf, waarbij elke knoop in de graaf een adres vertegenwoordigt en elke kant tussen twee knopen de weg tussen de corresponderende adressen. Elke kant heeft een gewicht dat aangeeft hoe lang de corresponderende weg is. Het probleem is dan om een cykel in de graaf te vinden die alle knopen bevat en waarvoor de som van de gewichten van alle kanten in de cykel minimaal is. Helaas is het zo dat de meeste problemen op grafen die praktische problemen modelleren lastig zijn in die zin, dat er waarschijnlijk geen effici¨ ente algoritmen zijn die deze problemen oplossen. Formeel gezegd zijn deze problemen NP-lastig. Het handelsreizigersprobleem is een voorbeeld hiervan. Een manier om hiermee om te gaan is om te kijken of er in het probleem uit de praktijk een structuur zit die maakt dat het probleem effici¨ enter is op te lossen. Het kan bijvoorbeeld zo zijn dat het gegeven probleem in het algemeen lastig is, maar dat de grafen die in de praktijk voorkomen een dusdanige structuur hebben dat er wel een effici¨ ent algoritme voor het probleem bestaat. Een voorbeeld van een prettige graafstructuur is de boomstructuur: het blijkt dat veel graafproblemen die in het algemeen lastig zijn, een effici¨ ent algoritme hebben wanneer de graaf een boom is. Helaas is de boomstructuur erg beperkt: er zijn maar weinig praktische problemen die kunnen worden gemodelleerd als problemen op bomen. In dit proefschrift kij-ken we daarom naar een generalisatie van deze structuur, en dat is de boomachtige structuur: we kijken naar grafen met boombreedte hooguit k of padbreedte hooguit k, waarbij k een positief geheel getal is. Intu¨itief gezien geeft de boombreedte van een graaf de mate aan waarin de graaf op een boom lijkt: hoe groter de gelijkenis, hoe kleiner de boombreedte. Met een graaf van boom-breedte k kan een boom worden geassocieerd waarbij elke knoop van de boom correspondeert met een deelgraaf van de graaf op een zodanige manier dat elke knoop en elke kant van de graaf in tenminste een knoop van de boom voorkomt, en voor elke knoop v in de graaf geldt dat de knopen in de boom die v bevatten een verbonden deelboom vormen. Zo n boom bestaande uit deelgrafen wordt een boomdecompositie van de graaf genoemd. De breedte van de boomdecompositie is het maximaal aantal knopen van de graaf dat in ´ e´ en 233?Samenvatting knoop van de boomdecompositie voorkomt, min ´ e´ en. De boombreedte van een graaf is de minimale breedte over alle boomdecomposities van de graaf (een boom heeft boombreedte ´ e´ en). Een paddecompositie van een graaf is een boomdecompositie die de vorm heeft van een pad. De padbreedte van een graaf is de minimale breedte over alle paddecomposities van de graaf. Dus de boombreedte van een graaf is altijd ten hoogste gelijk aan z n padbreedte. Voor veel problemen zoals het handelsreizigersprobleem is er een effici¨ ent algoritme op grafen met kleine boombreedte. Het blijkt dat er veel praktische graafproblemen zijn waar-voor de invoergraaf een kleine boombreedte heeft. Bij al deze problemen helpt dit gegeven bij het vinden van een effici¨ enter algoritme. Deze algoritmen maken meestal gebruik van een boomdecompositie van de graaf met kleine breedte. Daarom is het nodig om eerst zo n boomdecompositie van de graaf te vinden. Hiervoor zijn effici¨ ente algoritmen beschikbaar, zowel sequentieel als parallel. Helaas is het zo dat veel algoritmen op grafen met een kleine boombreedte alleen in theorie efficient zijn: de looptijd van de algoritmen is vaak exponentieel in de boombreedte van de graaf. Dit geldt bijvoorbeeld voor de algoritmen voor het vinden van een boom- of paddecompositie van breedte hooguit k van een graaf, waarbij k constant is. Het doel van dit proefschrift is om effici¨ ente sequenti¨ ele en parallelle algoritmen te ont-werpen voor problemen op grafen met een kleine boom- of padbreedte. Het doel is om algoritmen te ontwerpen die niet alleen theoretisch effici¨ ent zijn, maar die ook in praktische toepassingen effici¨ ent kunnen zijn. Het proefschrift is als volgt georganiseerd. Hoofdstuk 1 geeft een inleiding. In hoofd-stuk 2 worden formele definities van boom- en padbreedte gegeven, en wordt een aantal ei-genschappen en bekende resultaten over grafen met een kleine boom- en padbreedte gegeven. Verder worden definities gegeven die worden gebruikt in de rest van het proefschrift. In hoofdstuk 3 geven we een volledige karakterisatie van grafen met padbreedte twee. Deze karakterisatie wordt vervolgens gebruikt voor een effici¨ ent sequentieel algoritme dat beslist of een graaf padbreedte ten hoogste twee heeft en, als dat zo is, een paddecompositie van minimale breedte vindt. De karakterisatie wordt ook gebruikt in de algoritmen die zijn beschreven in hoofdstuk 4. Hoofdstuk 4 gaat over twee problemen welke hun oorsprong vinden in de moleculaire biologie. In beide problemen bestaat de invoer uit een aantal copie¨ en van een DNA string welke in fragmenten zijn opgedeeld. Voor elk paar van fragmenten is informatie beschikbaar over de overlap tussen die twee fragmenten: ´ of we weten dat de fragmenten zeker overlappen, ´ of we weten dat ze zeker niet overlappen, ´ of we weten niets. Met behulp van deze informatie moet de volledige overlap informatie tussen elk tweetal fragmenten worden berekend, dat wil zeggen dat voor elk tweetal fragmenten moet worden berekend of ze wel of niet overlappen. Dit probleem heet k-INTERVALIZING SANDWICH GRAPHS of k-ISG, waarbij k het aantal copie¨ en is dat is gefragmenteerd. In de tweede variant is ook nog bekend dat alle fragmenten gelijke lengte hebben. Deze variant heet k-UNIT-INTERVALIZING SANDWICH GRAPHS of k-UISG. De invoer van beide problemen kan worden gemodelleerd als een graaf. Het blijkt dat de volledige overlap informatie alleen kan worden berekend wanneer die graaf padbreedte ten hoogste k heeft, waarbij k weer het aantal copie¨ en is. In Hoofdstuk 4 geven we een 234?Samenvatting kwadratisch algoritme voor 3-ISG, en we bewijzen dat k-ISG NP-moeilijk is wanneer k 4. Verder geven we een lineair algoritme voor 3-UISG. Hoofstukken 5 9 gaan over een speciaal soort algoritmen, namelijk reductie algorit-men. Een reductie algoritme is een algoritme waarin een reeks reducties wordt uitgevoerd op de invoergraaf. Het gedrag van de reducties is beschreven in een verzameling van reductie regels, welke afhangen van het probleem waarvoor het algoritme is. Wanneer de reductie re-gels aan bepaalde voorwaarden voldoen kan het reductie algoritme lineaire tijd gebruiken (of logaritmische tijd in het geval van een parallel reductie algoritme). De reductie algoritmen zijn eenvoudig: de moeilijkheden van het probleem zitten verstopt in de verzameling reductie regels, en niet in het algoritme. Er zijn hele klassen van problemen op grafen met begrensde boombreedte waarvoor een verzameling van reductie regels kan worden geconstrueerd. Het voordeel van reductie algo-ritmen voor het oplossen van problemen op grafen met begrensde boombreedte is dat er geen boomdecompositie van de graaf nodig is: de algoritmen werken direct op de graaf. In hoofdstuk 5 geven we een overzicht van de bestaande theorie¨ en over reductie algorit-men. We combineren verschillende bestaande idee¨ en en presenteren ze als een geheel. Dit hoofdstuk is tevens een inleiding voor hoofdstukken 6 9. Reductie algoritmen hebben als nadeel dat ze alleen optimaliserings- en beslissingspro-blemen kunnen oplossen: bij een optimaliseringsprobleem wordt alleen de optimale waarde teruggegeven, maar niet een oplossing waarvoor de waarde optimaal is. Bij beslissingspro-blemen wordt alleen het antwoord ja of nee gegeven, maar als het antwoord ja is wordt geen oplossing gegeven. In hoofdstuk 6 breiden we de theorie van reductie algoritmen uit naar constructieve reductie algoritmen welke ook een (optimale) oplossing teruggeven, mits er een is. We laten zien dat voor veel problemen op grafen met begrensde boombreedte waar-voor reductie algoritmen kunnen worden toegepast, ook de constructieve reductie algoritmen kunnen worden toegepast. In hoofdstuk 7 passen we de theorie¨ en welke zijn gepresenteerd in hoofdstukken 5 en 6 toe op een aantal optimaliseringsproblemen. In hoofdstukken 8 en 9 gebruiken we de theorie¨ en uit hoofdstuk 6, aangevuld met nieuwe idee¨ en, om effici¨ ente, constructieve parallelle reductie algoritmen te verkrijgen voor de vol-gende twee aanverwante problemen: gegeven een graaf, bepaal of hij series-parallel is, en zo ja, vind dan een sp-boom van de graaf, gegeven een graaf, bepaal of hij boombreedte hooguit twee heeft, en zo ja, maak een boomdecompositie van breedte twee van de graaf. In hoofdstuk 10 vatten we de resultaten uit dit proefschrift nog eens samen, en geven we wat richtingen aan voor verder onderzoek. Appendix A bevat een opsomming van definities van alle graafproblemen welke worden gebruikt in het proefschrift. 235?Samenvatting 23

    On computing tree and path decompositions with metric constraints on the bags

    Get PDF
    We here investigate on the complexity of computing the \emph{tree-length} and the \emph{tree-breadth} of any graph GG, that are respectively the best possible upper-bounds on the diameter and the radius of the bags in a tree decomposition of GG. \emph{Path-length} and \emph{path-breadth} are similarly defined and studied for path decompositions. So far, it was already known that tree-length is NP-hard to compute. We here prove it is also the case for tree-breadth, path-length and path-breadth. Furthermore, we provide a more detailed analysis on the complexity of computing the tree-breadth. In particular, we show that graphs with tree-breadth one are in some sense the hardest instances for the problem of computing the tree-breadth. We give new properties of graphs with tree-breadth one. Then we use these properties in order to recognize in polynomial-time all graphs with tree-breadth one that are planar or bipartite graphs. On the way, we relate tree-breadth with the notion of \emph{kk-good} tree decompositions (for k=1k=1), that have been introduced in former work for routing. As a byproduct of the above relation, we prove that deciding on the existence of a kk-good tree decomposition is NP-complete (even if k=1k=1). All this answers open questions from the literature.Comment: 50 pages, 39 figure

    Complexity Results for the Spanning Tree Congestion Problem

    Full text link
    We study the problem of determining the spanning tree congestion of a graph. We present some sharp contrasts in the complexity of this problem. First, we show that for every fixed k and d the problem to determine whether a given graph has spanning tree congestion at most k can be solved in linear time for graphs of degree at most d. In contrast, if we allow only one vertex of unbounded degree, the problem immediately becomes NP-complete for any fixed k ≥ 10. For very small values of k however, the problem becomes polynomially solvable. We also show that it is NP-hard to approximate the spanning tree congestion within a factor better than 11/10. On planar graphs, we prove the problem is NP-hard in general, but solvable in linear time for fixed k

    On computing the Gromov hyperbolicity

    Get PDF
    International audienceThe Gromov hyperbolicity is an important parameter for analyzing complex networks which expresses how the metric structure of a network looks like a tree. It is for instance used to provide bounds on the expected stretch of greedy-routing algorithms in Internet-like graphs. However, the best known theoretical algorithm computing this parameter runs in O(n^3.69) time, which is prohibitive for large-scale graphs. In this paper, we propose an algorithm for determining the hyperbolicity of graphs with tens of thousands of nodes. Its running time depends on the distribution of distances and on the actual value of the hyperbolicity. Although its worst case runtime is O(n^4), it is in practice much faster than previous proposals as observed in our experimentations. Finally, we propose a heuristic algorithm that can be used on graphs with millions of nodes. Our algorithms are all evaluated on benchmark instances

    Designing Efficient Algorithms for Distributed Systems.

    Get PDF
    Search for efficient algorithms for distributed systems has become an important area of computer science. This research is driven by the need to efficiently process and communicate information generated by the system. In distributed systems, topological information plays an important role in the design of fast algorithms for problems such as routing, broadcasting, and sorting. The central focus of this dissertation is the design and analysis of distributed algorithms for determining topological information in asynchronous communication networks. Specifically, we present distributed algorithms for two generic problems: distributed graph problems and network traversal problems. Network location and network recognition are two important graph problems in distributed systems. We present unified algorithms for locating centers and medians of asynchronous communication networks. Also, we present both the centralized and decentralized versions of the algorithm. Furthermore, this is the first decentralized algorithm reported in the literature. These results are further extended to weighted networks. In addition, the unified algorithm can also be used to determine other topological parameters such as the diameter, and centroids of distributed networks. Efficient algorithms for problems such as finding shortest paths, centers, and sorting could be designed if the network topology is known a priori. Towards this end, we solve an open problem of recognizing mesh (grid) structures. We formulate both centralized and decentralized algorithms for recognizing mesh networks. The time and message complexities of the algorithm are O(n\sp{1.6}) and O(e+nlogn), respectively, where n is the number of nodes and e is the number of edges of the graph underlying the network. Network traversal is a fundamental activity in a distributed system and it has been widely studied in the literature. We present efficient distributed algorithms for depth first traversal of an asynchronous communication network and show the usefulness of this algorithm in deriving efficient solutions to the problems related to network learning. Finally, we discuss application of some of these algorithms in distributed sensor networks

    Schematics of Graphs and Hypergraphs

    Get PDF
    Graphenzeichnen als ein Teilgebiet der Informatik befasst sich mit dem Ziel Graphen oder deren Verallgemeinerung Hypergraphen geometrisch zu realisieren. Beschränkt man sich dabei auf visuelles Hervorheben von wesentlichen Informationen in Zeichenmodellen, spricht man von Schemata. Hauptinstrumente sind Konstruktionsalgorithmen und Charakterisierungen von Graphenklassen, die für die Konstruktion geeignet sind. In dieser Arbeit werden Schemata für Graphen und Hypergraphen formalisiert und mit den genannten Instrumenten untersucht. In der Dissertation wird zunächst das „partial edge drawing“ (kurz: PED) Modell für Graphen (bezüglich gradliniger Zeichnung) untersucht. Dabei wird um Kreuzungen im Zentrum der Kante visuell zu eliminieren jede Kante durch ein kreuzungsfreies Teilstück (= Stummel) am Start- und am Zielknoten ersetzt. Als Standard hat sich eine PED-Variante etabliert, in der das Längenverhältnis zwischen Stummel und Kante genau 1⁄4 ist (kurz: 1⁄4-SHPED). Für 1⁄4-SHPEDs werden Konstruktionsalgorithmen, Klassifizierung, Implementierung und Evaluation präsentiert. Außerdem werden PED-Varianten mit festen Knotenpositionen und auf Basis orthogonaler Zeichnungen erforscht. Danach wird das BUS Modell für Hypergraphen untersucht, in welchem Hyperkanten durch fette horizontale oder vertikale – als BUS bezeichnete – Segmente repräsentiert werden. Dazu wird eine vollständige Charakterisierung von planaren Inzidenzgraphen von Hypergraphen angegeben, die eine planare Zeichnung im BUS Modell besitzen, und diverse planare BUS-Varianten mit festen Knotenpositionen werden diskutiert. Zum Schluss wird erstmals eine Punktmenge von subquadratischer Größe angegeben, die eine planare Einbettung (Knoten werden auf Punkte abgebildet) von 2-außenplanaren Graphen ermöglicht
    corecore