24,376 research outputs found

    Neural Information Processing: between synchrony and chaos

    Get PDF
    The brain is characterized by performing many different processing tasks ranging from elaborate processes such as pattern recognition, memory or decision-making to more simple functionalities such as linear filtering in image processing. Understanding the mechanisms by which the brain is able to produce such a different range of cortical operations remains a fundamental problem in neuroscience. Some recent empirical and theoretical results support the notion that the brain is naturally poised between ordered and chaotic states. As the largest number of metastable states exists at a point near the transition, the brain therefore has access to a larger repertoire of behaviours. Consequently, it is of high interest to know which type of processing can be associated with both ordered and disordered states. Here we show an explanation of which processes are related to chaotic and synchronized states based on the study of in-silico implementation of biologically plausible neural systems. The measurements obtained reveal that synchronized cells (that can be understood as ordered states of the brain) are related to non-linear computations, while uncorrelated neural ensembles are excellent information transmission systems that are able to implement linear transformations (as the realization of convolution products) and to parallelize neural processes. From these results we propose a plausible meaning for Hebbian and non-Hebbian learning rules as those biophysical mechanisms by which the brain creates ordered or chaotic ensembles depending on the desired functionality. The measurements that we obtain from the hardware implementation of different neural systems endorse the fact that the brain is working with two different states, ordered and chaotic, with complementary functionalities that imply non-linear processing (synchronized states) and information transmission and convolution (chaotic states)

    Distributed classifier based on genetically engineered bacterial cell cultures

    Full text link
    We describe a conceptual design of a distributed classifier formed by a population of genetically engineered microbial cells. The central idea is to create a complex classifier from a population of weak or simple classifiers. We create a master population of cells with randomized synthetic biosensor circuits that have a broad range of sensitivities towards chemical signals of interest that form the input vectors subject to classification. The randomized sensitivities are achieved by constructing a library of synthetic gene circuits with randomized control sequences (e.g. ribosome-binding sites) in the front element. The training procedure consists in re-shaping of the master population in such a way that it collectively responds to the "positive" patterns of input signals by producing above-threshold output (e.g. fluorescent signal), and below-threshold output in case of the "negative" patterns. The population re-shaping is achieved by presenting sequential examples and pruning the population using either graded selection/counterselection or by fluorescence-activated cell sorting (FACS). We demonstrate the feasibility of experimental implementation of such system computationally using a realistic model of the synthetic sensing gene circuits.Comment: 31 pages, 9 figure

    FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stochastic Inference

    Full text link
    The main obstacle to weakly supervised semantic image segmentation is the difficulty of obtaining pixel-level information from coarse image-level annotations. Most methods based on image-level annotations use localization maps obtained from the classifier, but these only focus on the small discriminative parts of objects and do not capture precise boundaries. FickleNet explores diverse combinations of locations on feature maps created by generic deep neural networks. It selects hidden units randomly and then uses them to obtain activation scores for image classification. FickleNet implicitly learns the coherence of each location in the feature maps, resulting in a localization map which identifies both discriminative and other parts of objects. The ensemble effects are obtained from a single network by selecting random hidden unit pairs, which means that a variety of localization maps are generated from a single image. Our approach does not require any additional training steps and only adds a simple layer to a standard convolutional neural network; nevertheless it outperforms recent comparable techniques on the Pascal VOC 2012 benchmark in both weakly and semi-supervised settings.Comment: To appear in CVPR 201
    corecore