417 research outputs found

    A Simple Fiber Bragg Grating-Based Sensor Network Architecture with Self-Protecting and Monitoring Functions

    Get PDF
    A novel fiber Bragg grating (FBG)-based passive sensor architecture, which can be used to protect the fiber cut and monitor the multiple sensors simultaneously, is proposed and experimentally demonstrated. Here, we employ a wavelength-tunable erbium-doped fiber (EDF) laser scheme with 25 km cavity length acting as the detecting light source in central office (CO). Each FBG sensor, serving as a feedback element, is used in proposed sensor architecture. By tuning the tunable bandpass filter (TBF) placing inside cavity to match the corresponding Bragg wavelength of FBG over the amplification bandwidth, we can retrieve the related wavelength lasing for the FBG sensing and monitoring simultaneously. Moreover, the survivability and capacity of the passive FBG sensor architecture can be also enhanced

    Robust fiber-optic sensor networks

    Get PDF
    The ability to operate despite failure will become increasingly important as the use of optical sensor networks grows, and the amount of sensing information to be handled by a sensor network is increasing, especially for safety and security applications. In this review, the four categories of protection to allow service to be reestablished after a failure (dedicated/shared and line/path) are thoroughly discussed. This paper also presents an overview of the most representative robust fiber-optic sensor systems, discussing their schemes, pros and cons.The authors are grateful to the Spanish Government project TEC2010-20224-C02-01

    Measurement of Organic Chemical Refractive Indexes Using an Optical Time-Domain Reflectometer

    Get PDF
    In this investigation, we propose and experimentally demonstrate a method for measuring the refractive index (RI) of liquid organic chemicals. The scheme is based on a single-mode fiber (SMF) sensor and an optical time-domain reflectometer (OTDR). Here, due to the different reflectance (R) between the SMF and organic liquid chemicals, the reflected power level of the backscattering light (BSL) measured by the OTDR would be different. Therefore, we can measure the RI of chemical under test via the measured BSL level. The proposed RI sensor is simple and easy to manipulate, with stable detected signals, and has the potential to be a valuable tool for use in biological and chemical applications

    Intensity based interrogation of optical fibre sensors for industrial automation and intrusion detection systems

    Get PDF
    In this study, the use of optical fibre sensors for intrusion detection and industrial automation systems has been demonstrated, with a particular focus on low cost, intensity-based, interrogation techniques. The use of optical fibre sensors for intrusion detection systems to secure residential, commercial, and industrial premises against potential security breaches has been extensively reviewed in this thesis. Fibre Bragg grating (FBG) sensing is one form of optical fibre sensing that has been underutilised in applications such as in-ground, in-fence, and window and door monitoring, and addressing that opportunity has been a major goal of this thesis. Both security and industrial sensor systems must include some centralised intelligence (electronic controller) and ideally both automation and security sensor systems would be controlled and monitored by the same centralised system. Optical fibre sensor systems that could be used for either application have been designed, developed, and tested in this study, and optoelectronic interfaces for integrating these sensors with electronic controllers have been demonstrated. The versatility of FBG sensors means that they are also ideal for certain mainstream industrial applications. Two novel transducers have been developed in this work; a highly sensitive low pressure FBG diaphragm transducer and a FBG load cell transducer. Both have been designed to allow interrogation of the optical signal could occur within the housing of the individual sensors themselves. This is achieved in a simple and low cost manner that enables the output of the transducers to be easily connected to standard electronic controllers, such as programmable logic controllers. Furthermore, some of the nonlinear characteristics of FBG sensors have been explored with the aim of developing transducers that are inherently decoupled from strain and temperature interference. One of the major advantages of optical fibre sensors is their ability to be both time division and wavelength division multiplexed. The intensity-based interrogation techniques used here complement this attribute and are a major consideration when developing the transducers and optoelectronic circuits. A time division multiplexing technique, using transmit-reflect detection and incorporating a dual bus, has also been developed. This system architecture enables all the different optical fibre transducers on the network to have the same Bragg wavelength and hence the number of spare replacement transducers required is minimal. Moreover, sensors can be replaced in an online control system without disrupting the network. In addition, by analysing both the transmitted and reflected signals, problems associated with optical power fluctuations are eliminated and the intensity of the sensor signals is increased through differential amplification. Overall, the research addresses the limitations of conventional electrical sensors, such as susceptibility to corrosive damage in wet and corrosive environments, and risk of causing an explosion in hazardous environments, as well as the limitations of current stand-alone optical fibre sensor systems. This thesis supports more alert, reliable, affordable, and coordinated, control and monitoring systems in an on-line environment

    Optical Sensors

    Get PDF
    This book is a compilation of works presenting recent developments and practical applications in optical sensor technology. It contains 10 chapters that encompass contributions from various individuals and research groups working in the area of optical sensing. It provides the reader with a broad overview and sampling of the innovative research on optical sensors in the world

    Contribution to the development of new photonic systems for fiber optic sensing applications

    Get PDF
    En este trabajo de doctorado se presentan nuevos sistemas y subsistemas de sensores de fibra óptica. Así, se proponen y desarrollan nuevas técnicas, componentes y tecnologías basadas en láseres de fibra con espejos distribuidos (random), fibras de cristal fotónico, estructuras de luz lenta, multiplexores de inserción y extracción (add and drop), conmutadores tele-alimentados por luz, reflectometría óptica tanto en el dominio del tiempo como de la frecuencia o filtros ópticos reconfigurables. También se han demostrado nuevas aplicaciones para estructuras de sensores tradicionales y técnicas de medida ya conocidas. Todas ellas dirigidas a la mejora del funcionamiento de los actuales transductores, redes de sensores y aplicaciones de monitorización de salud estructural. De este modo, y en primer lugar, se han desarrollado nuevos transductores puntuales. En concreto, dos sensores interferométricos basados en fibras de cristal fotónico y otro basado en una estructura resonante en anillo. También se han realizado diferentes redes de sensores utilizando OTDRs comerciales. Por un lado, se han multiplexado diferentes sensores utilizando una red en forma de bus y, por el otro, se ha interrogado de manera remota un sensor FLM/LPG a una distancia de 253 km sin necesidad de amplificación. Se han estudiado láseres basados en efecto de realimentación distribuida random (RDFB) para su uso en interrogación de sensores. Para ello, se han demostrado dos nuevos láseres multi-longitud de onda y también, por primera vez, se ha modulado un laser random. Después, se han demostrado experimentalmente varias redes de sensores de fibra óptica teniendo en cuenta los principales desafíos que estas presentan: multiplexar varios sensores en una misma red y permitir su monitorización de manera remota. En primer lugar, se han multiplexado sensores basados en la modulación de la intensidad óptica utilizando técnicas de multiplexación en dominio del tiempo. En segundo lugar, se han multiplexado sensores basados en fibras de cristal fotónico. En tercer lugar, se presentan tres nuevos métodos para la medida remota de sensores. Por último, se incluye la demostración de un conmutador de fibra óptica tele-alimentado a través de luz. Éste se utiliza en tres redes diferentes para añadir robustez e incrementar la versatilidad en la multiplexación. Finalmente, se han realizado tres pruebas de campo para aplicaciones de monitorización de salud estructural.In this PhD work, different new photonic systems and subsystems for fiber optic sensing are presented. The aim of this thesis has been to contribute to the fiber optic sensors field using modern techniques, components and technologies such as random fiber lasers, photonic crystal fibers, slow light structures, add and drop multiplexers, powered by light switches, optical frequency and time domain reflectometry or reconfigurable optical filters, among others. New applications of traditional sensing structures or techniques have been also demonstrated. All of them focused on improving the performance of current sensors transducers, multiplexing networks and structural health monitoring applications. Thus, new point transducers have been developed: two of them are interferometric sensors based on photonic crystal fibers; and another one is based on a fiber ring resonator structure. Fiber optic sensor networks using commercial OTDRs have been also explored. On the one hand, different sensors have been successfully multiplexed in the same bus network. And, on the other hand, a FLM/LPG sensor was remotely interrogated at a distance of 253 km without using amplification. Random distributed feedback (RDFB) lasers have been explored for sensors interrogation. Two multi-wavelength Raman fiber lasers suitable for sensors interrogation have been demonstrated. Also, a random fiber laser has been internally modulated for the first time. Then, some experimental demonstrations of fiber optic sensors networks have been carried out taking into account the principal challenges they pose: multiplexing a number of optical sensors in a single networks, and enabling the possibility of remote sensing. Firstly, intensity sensors using TDM technology have been multiplexed. Secondly, PCF sensors have been successfully multiplexed. Thirdly, three new approaches to enable remote sensing are presented. Finally, a remote powered by light fiber optic switch have been included in three networks in order to add robustness and multiplexing versatility.Este trabajo se ha llevado a cabo gracias a las aportaciones económicas recibidas de los siguientes organismos, entre otros: - Secretaría de Estado de Investigación, Desarrollo e Innovación, Ministerio de Economía y Competitividad de España a través del programa de Formación del Personal Investigador y asociado al proyecto de investigación TEC2010-20224-C02-01. - Universidad Pública de Navarra mediante las ayudas a tesis doctorares. - Acción Europea COST- TD1001: Novel and Reliable Optical Fibre Sensor Systems for Future Security and Safety Applications (OFSeSa) - También se ha recibido financiación del Proyecto de Investigación de la Secretaría de Estado de Investigación, Desarrollo e Innovación, Ministerio de Economía y Competitividad de España TEC2013-47264-C2-2-R, de Innocampus, del Proyecto Europeo SUDOE-ECOAL-Intereg Project ECOAL-MGT y de los Fondos FEDER.Programa Oficial de Doctorado en Tecnologías de las Comunicaciones (RD 1393/2007)Komunikazioen Teknologietako Doktoretza Programa Ofiziala (ED 1393/2007

    Modern Applications in Optics and Photonics: From Sensing and Analytics to Communication

    Get PDF
    Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future

    Photonic skin based on polymer embedding of optical sensors and interrogation units

    Get PDF

    D5.1 SHM digital twin requirements for residential, industrial buildings and bridges

    Get PDF
    This deliverable presents a report of the needs for structural control on buildings (initial imperfections, deflections at service, stability, rheology) and on bridges (vibrations, modal shapes, deflections, stresses) based on state-of-the-art image-based and sensor-based techniques. To this end, the deliverable identifies and describes strategies that encompass state-of-the-art instrumentation and control for infrastructures (SHM technologies).Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement EconòmicObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPreprin

    Proceedings 2006 eleventh annual symposium of the IEEE/LEOS Benelux Chapter, November 30 - December 1, 2006, Eindhoven, The Netherlands

    Get PDF
    corecore