21,339 research outputs found

    A Simple Baseline for Travel Time Estimation using Large-Scale Trip Data

    Full text link
    The increased availability of large-scale trajectory data around the world provides rich information for the study of urban dynamics. For example, New York City Taxi Limousine Commission regularly releases source-destination information about trips in the taxis they regulate. Taxi data provide information about traffic patterns, and thus enable the study of urban flow -- what will traffic between two locations look like at a certain date and time in the future? Existing big data methods try to outdo each other in terms of complexity and algorithmic sophistication. In the spirit of "big data beats algorithms", we present a very simple baseline which outperforms state-of-the-art approaches, including Bing Maps and Baidu Maps (whose APIs permit large scale experimentation). Such a travel time estimation baseline has several important uses, such as navigation (fast travel time estimates can serve as approximate heuristics for A search variants for path finding) and trip planning (which uses operating hours for popular destinations along with travel time estimates to create an itinerary).Comment: 12 page

    Net Effects of Gasoline Price Changes on Transit Ridership in U.S. Urban Areas, MTI Report 12-19

    Get PDF
    Using panel data of transit ridership and gasoline prices for ten selected U.S. urbanized areas over the time period of 2002 to 2011, this study analyzes the effect of gasoline prices on ridership of the four main transit modes—bus, light rail, heavy rail, and commuter rail—as well as their aggregate ridership. Improving upon past studies on the subject, this study accounts for endogeneity between the supply of services and ridership, and controls for a comprehensive list of factors that may potentially influence transit ridership. This study also examines short- and long-term effects and non-constant effects at different gasoline prices. The analysis found varying effects, depending on transit modes and other conditions. Strong evidence was found for positive short-term effects only for bus and the aggregate: a 0.61-0.62 percent ridership increase in response to a 10 percent increase in current gasoline prices (elasticity of 0.061 to 0.062). The long-term effects of gasoline prices, on the other hand, was significant for all modes and indicated a total ridership increase ranging from 0.84 percent for bus to 1.16 for light rail, with commuter rail, heavy rail, and the aggregate transit in response to a 10 percent increase in gasoline prices. The effects at the higher gasoline price level of over 3pergallonwerefoundtobemoresubstantial,witharidershipincreaseof1.67percentforbus,2.05percentforcommuterrail,and1.80percentfortheaggregateforthesamelevelofgasolinepricechanges.Lightrailshowsevenahigherrateofincreaseof9.34percentforgasolinepricesover3 per gallon were found to be more substantial, with a ridership increase of 1.67 percent for bus, 2.05 percent for commuter rail, and 1.80 percent for the aggregate for the same level of gasoline price changes. Light rail shows even a higher rate of increase of 9.34 percent for gasoline prices over 4. In addition, a positive threshold boost effect at the 3markofgasolinepriceswasfoundforcommuterandheavyrails,resultinginasubstantiallyhigherrateofridershipincrease.Theresultsofthisstudysuggestthattransitagenciesshouldprepareforapotentialincreaseinridershipduringpeakperiodsthatcanbegeneratedbysubstantialgasolinepriceincreasesover3 mark of gasoline prices was found for commuter and heavy rails, resulting in a substantially higher rate of ridership increase. The results of this study suggest that transit agencies should prepare for a potential increase in ridership during peak periods that can be generated by substantial gasoline price increases over 3 per gallon for bus and commuter rail modes, and over $4 per gallon for light rail, in order to accommodate higher transit travel needs of the public through pricing strategies, general financing, capacity management, and operations planning of transit services

    Ambulance Emergency Response Optimization in Developing Countries

    Full text link
    The lack of emergency medical transportation is viewed as the main barrier to the access of emergency medical care in low and middle-income countries (LMICs). In this paper, we present a robust optimization approach to optimize both the location and routing of emergency response vehicles, accounting for uncertainty in travel times and spatial demand characteristic of LMICs. We traveled to Dhaka, Bangladesh, the sixth largest and third most densely populated city in the world, to conduct field research resulting in the collection of two unique datasets that inform our approach. This data is leveraged to develop machine learning methodologies to estimate demand for emergency medical services in a LMIC setting and to predict the travel time between any two locations in the road network for different times of day and days of the week. We combine our robust optimization and machine learning frameworks with real data to provide an in-depth investigation into three policy-related questions. First, we demonstrate that outpost locations optimized for weekday rush hour lead to good performance for all times of day and days of the week. Second, we find that significant improvements in emergency response times can be achieved by re-locating a small number of outposts and that the performance of the current system could be replicated using only 30% of the resources. Lastly, we show that a fleet of small motorcycle-based ambulances has the potential to significantly outperform traditional ambulance vans. In particular, they are able to capture three times more demand while reducing the median response time by 42% due to increased routing flexibility offered by nimble vehicles on a larger road network. Our results provide practical insights for emergency response optimization that can be leveraged by hospital-based and private ambulance providers in Dhaka and other urban centers in LMICs

    A COMPARISON OF STATED AND REVEALED PREFERENCE METHODS FOR FISHERIES MANAGEMENT

    Get PDF
    In this paper, we compare revealed and stated preference methods for anglers' preferences for various fisheries management measures. Using random utility models of recreation demand, we compare the use of stated and revealed preference methodologies for analyzing fisheries management options. We compare parameter and welfare estimates from the two models.Resource /Energy Economics and Policy,

    Detecting Outliers in Data with Correlated Measures

    Full text link
    Advances in sensor technology have enabled the collection of large-scale datasets. Such datasets can be extremely noisy and often contain a significant amount of outliers that result from sensor malfunction or human operation faults. In order to utilize such data for real-world applications, it is critical to detect outliers so that models built from these datasets will not be skewed by outliers. In this paper, we propose a new outlier detection method that utilizes the correlations in the data (e.g., taxi trip distance vs. trip time). Different from existing outlier detection methods, we build a robust regression model that explicitly models the outliers and detects outliers simultaneously with the model fitting. We validate our approach on real-world datasets against methods specifically designed for each dataset as well as the state of the art outlier detectors. Our outlier detection method achieves better performances, demonstrating the robustness and generality of our method. Last, we report interesting case studies on some outliers that result from atypical events.Comment: 10 page
    • …
    corecore