26,994 research outputs found

    Bayesian Policy Gradients via Alpha Divergence Dropout Inference

    Full text link
    Policy gradient methods have had great success in solving continuous control tasks, yet the stochastic nature of such problems makes deterministic value estimation difficult. We propose an approach which instead estimates a distribution by fitting the value function with a Bayesian Neural Network. We optimize an α\alpha-divergence objective with Bayesian dropout approximation to learn and estimate this distribution. We show that using the Monte Carlo posterior mean of the Bayesian value function distribution, rather than a deterministic network, improves stability and performance of policy gradient methods in continuous control MuJoCo simulations.Comment: Accepted to Bayesian Deep Learning Workshop at NIPS 201

    Concrete Dropout

    Full text link
    Dropout is used as a practical tool to obtain uncertainty estimates in large vision models and reinforcement learning (RL) tasks. But to obtain well-calibrated uncertainty estimates, a grid-search over the dropout probabilities is necessary - a prohibitive operation with large models, and an impossible one with RL. We propose a new dropout variant which gives improved performance and better calibrated uncertainties. Relying on recent developments in Bayesian deep learning, we use a continuous relaxation of dropout's discrete masks. Together with a principled optimisation objective, this allows for automatic tuning of the dropout probability in large models, and as a result faster experimentation cycles. In RL this allows the agent to adapt its uncertainty dynamically as more data is observed. We analyse the proposed variant extensively on a range of tasks, and give insights into common practice in the field where larger dropout probabilities are often used in deeper model layers

    Dropout Distillation for Efficiently Estimating Model Confidence

    Full text link
    We propose an efficient way to output better calibrated uncertainty scores from neural networks. The Distilled Dropout Network (DDN) makes standard (non-Bayesian) neural networks more introspective by adding a new training loss which prevents them from being overconfident. Our method is more efficient than Bayesian neural networks or model ensembles which, despite providing more reliable uncertainty scores, are more cumbersome to train and slower to test. We evaluate DDN on the the task of image classification on the CIFAR-10 dataset and show that our calibration results are competitive even when compared to 100 Monte Carlo samples from a dropout network while they also increase the classification accuracy. We also propose better calibration within the state of the art Faster R-CNN object detection framework and show, using the COCO dataset, that DDN helps train better calibrated object detectors
    • …
    corecore