21 research outputs found

    Design of a correlator for UWB transceivers

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Design of low power CMOS UWB transceiver ICs

    Get PDF
    Master'sMASTER OF ENGINEERIN

    An analog approach to interference suppression in ultra-wideband receivers

    Get PDF
    Because of the huge bandwidth of Ultra-Wideband (UWB) systems, in-band narrowband interference may hinder receiver performance. In this dissertation, sources of potential narrowband interference that lie within the IEEE 802.15.3a UWB bandwidth are presented, and a solution is proposed. To combat interference in Multi-Band OFDM (MB-OFDM) UWB systems, an analog notch filter is designed to be included in the UWB receive chain. The architecture of the filter is based on feed-forward subtraction of the interference, and includes a Least Means Squared (LMS) tuning scheme to maximize attenuation. The filter uses the Fast Fourier Transform (FFT) result for interference detection and discrete center frequency tuning of the filter. It was fabricated in a 0.18 õm process, and experimental results are provided. This is the first study of potential in-band interference sources for UWB. The proposed filter offers a practical means for ensuring reliable UWB communication in the presense of such interference. The Operational Transconductance Amplifier (OTA) is the predominant building block in the design of the notch filter. In many cases, OTAs must handle input signals with large common mode swings. A new scheme for achieving rail-to-rail input to an OTA is introduced. Constant gm is obtained by using tunable level shifters and a single differential pair. Feedback circuitry controls the level shifters in a manner that fixes the common mode input of the differential pair, resulting in consistent and stable operation for rail-to-rail inputs. As the new technique avoids using complimentary input differential pairs, this method overcomes problems such as Common Mode Rejection Ratio (CMRR) and Gain Bandwidth (GBW) product degradation that exist in many other designs. The circuit was fabricated in a 0.5õm process. The resulting differential pair had a constant transconductance that varied by only ñ0.35% for rail-to-rail input common mode levels. The input common mode range extended well past the supply levels of ñ1.5V, resulting in only ñ1% fluctuation in gm for input common modes from -2V to 2V

    CMOS optical centroid processor for an integrated Shack-Hartmann wavefront sensor

    Get PDF
    A Shack Hartmann wavefront sensor is used to detect the distortion of light in an optical wavefront. It does this by sampling the wavefront with an array of lenslets and measuring the displacement of focused spots from reference positions. These displacements are linearly related to the local wavefront tilts from which the entire wavefront can be reconstructed. In most Shack Hartmann wavefront sensors, a CCD is used to sample the entire wavefront, typically at a rate of 25 to 60 Hz, and a whole frame of light spots is read out before their positions are processed. This results in a data bottleneck. In this design, parallel processing is achieved by incorporating local centroid processing for each focused spot, thereby requiring only reduced bandwidth data to be transferred off-chip at a high rate. To incorporate centroid processing at the sensor level requires high levels of circuit integration not possible with a CCD technology. Instead a standard 0.7J..lmCMOS technology was used but photodetector structures for this technology are not well characterised. As such characterisation of several common photodiode structures was carried out which showed good responsitivity of the order of 0.3 AIW. Prior to fabrication on-chip, a hardware emulation system using a reprogrammable FPGA was built which implemented the centroiding algorithm successfully. Subsequently, the design was implemented as a single-chip CMOS solution. The fabricated optical centroid processor successfully computed and transmitted the centroids at a rate of more than 2.4 kHz, which when integrated as an array of tilt sensors will allow a data rate that is independent of the number of tilt sensors' employed. Besides removing the data bottleneck present in current systems, the design also offers advantages in terms of power consumption, system size and cost. The design was also shown to be extremely scalable to a complete low cost real time adaptive optics system

    CMOS current amplifiers : speed versus nonlinearity

    Get PDF
    This work deals with analogue integrated circuit design using various types of current-mode amplifiers. These circuits are analysed and realised using modern CMOS integration technologies. The dynamic nonlinearities of these circuits are discussed in detail as in the literature only linear nonidealities and static nonlinearities are conventionally considered. For the most important open-loop current-mode amplifier, the second-generation current-conveyor (CCII), a macromodel is derived that, unlike other reported macromodels, can accurately predict the common-mode behaviour in differential applications. Similarly, this model is used to describe the nonidealities of several other current-mode amplifiers because similar circuit structures are common in such amplifiers. With modern low-voltage CMOS-technologies, the current-mode operational amplifier and the high-gain current-conveyor (CCII∞) perform better than open-loop current-amplifiers. Similarly, unlike with conventional voltage-mode operational amplifiers, the large-signal settling behaviour of these two amplifier types does not degrade as CMOS-processes are scaled down. In this work, two 1 MHz 3rd -order low-pass continuous-time filters are realised with a 1.2 μm CMOS-process. These filters use a differential CCII∞ with linearised, dynamically biased output stages resulting in performance superior to most OTA-C filter realisations reported. Similarly, two logarithmic amplifier chips are designed and fabricated. The first circuit, implemented with a 1.2 μm BiCMOS-process, uses again a CCII∞. This circuit uses a pn-junction as a logarithmic feedback element. With a CCII∞ the constant gain-bandwidth product, typical of voltage-mode operational amplifiers, is avoided resulting in a constant 1 MHz bandwidth with a 60 dB signal amplitude range. The second current-mode logarithmic amplifier, based on piece-wise linear approximation of the logarithmic function by a cascade of limiting current amplifier stages, is realised in a standard 1.2 μm CMOS-process. The limiting level in these current amplifiers is less sensitive to process variation than in limiting voltage amplifiers resulting in exceptionally low temperature dependency of the logarithmic output signal. Additionally, along with this logarithmic amplifier a new current peak detectoris developed.reviewe

    CMOS optical centroid processor for an integrated Shack-Hartmann wavefront sensor

    Get PDF
    A Shack Hartmann wavefront sensor is used to detect the distortion of light in an optical wavefront. It does this by sampling the wavefront with an array of lenslets and measuring the displacement of focused spots from reference positions. These displacements are linearly related to the local wavefront tilts from which the entire wavefront can be reconstructed. In most Shack Hartmann wavefront sensors, a CCD is used to sample the entire wavefront, typically at a rate of 25 to 60 Hz, and a whole frame of light spots is read out before their positions are processed. This results in a data bottleneck. In this design, parallel processing is achieved by incorporating local centroid processing for each focused spot, thereby requiring only reduced bandwidth data to be transferred off-chip at a high rate. To incorporate centroid processing at the sensor level requires high levels of circuit integration not possible with a CCD technology. Instead a standard 0.7J..lmCMOS technology was used but photodetector structures for this technology are not well characterised. As such characterisation of several common photodiode structures was carried out which showed good responsitivity of the order of 0.3 AIW. Prior to fabrication on-chip, a hardware emulation system using a reprogrammable FPGA was built which implemented the centroiding algorithm successfully. Subsequently, the design was implemented as a single-chip CMOS solution. The fabricated optical centroid processor successfully computed and transmitted the centroids at a rate of more than 2.4 kHz, which when integrated as an array of tilt sensors will allow a data rate that is independent of the number of tilt sensors' employed. Besides removing the data bottleneck present in current systems, the design also offers advantages in terms of power consumption, system size and cost. The design was also shown to be extremely scalable to a complete low cost real time adaptive optics system

    Direct digital synthesizers : theory, design and applications

    Get PDF
    Traditional designs of high bandwidth frequency synthesizers employ the use of a phase-locked-loop (PLL). A direct digital synthesizer (DDS) provides many significant advantages over the PLL approaches. Fast settling time, sub-Hertz frequency resolution, continuous-phase switching response and low phase noise are features easily obtainable in the DDS systems. Although the principle of the DDS has been known for many years, the DDS did not play a dominant role in wideband frequency generation until recent years. Earlier DDSs were limited to produce narrow bands of closely spaced frequencies, due to limitations of digital logic and D/A-converter technologies. Recent advantages in integrated circuit (IC) technologies have brought about remarkable progress in this area. By programming the DDS, adaptive channel bandwidths, modulation formats, frequency hopping and data rates are easily achieved. This is an important step towards a "software-radio" which can be used in various systems. The DDS could be applied in the modulator or demodulator in the communication systems. The applications of DDS are restricted to the modulator in the base station. The aim of this research was to find an optimal front-end for a transmitter by focusing on the circuit implementations of the DDS, but the research also includes the interface to baseband circuitry and system level design aspects of digital communication systems. The theoretical analysis gives an overview of the functioning of DDS, especially with respect to noise and spurs. Different spur reduction techniques are studied in detail. Four ICs, which were the circuit implementations of the DDS, were designed. One programmable logic device implementation of the CORDIC based quadrature amplitude modulation (QAM) modulator was designed with a separate D/A converter IC. For the realization of these designs some new building blocks, e.g. a new tunable error feedback structure and a novel and more cost-effective digital power ramp generator, were developed.reviewe
    corecore