27,806 research outputs found

    Hardware Implementation of the GPS authentication

    Get PDF
    In this paper, we explore new area/throughput trade- offs for the Girault, Poupard and Stern authentication protocol (GPS). This authentication protocol was selected in the NESSIE competition and is even part of the standard ISO/IEC 9798. The originality of our work comes from the fact that we exploit a fixed key to increase the throughput. It leads us to implement GPS using the Chapman constant multiplier. This parallel implementation is 40 times faster but 10 times bigger than the reference serial one. We propose to serialize this multiplier to reduce its area at the cost of lower throughput. Our hybrid Chapman's multiplier is 8 times faster but only twice bigger than the reference. Results presented here allow designers to adapt the performance of GPS authentication to their hardware resources. The complete GPS prover side is also integrated in the network stack of the PowWow sensor which contains an Actel IGLOO AGL250 FPGA as a proof of concept.Comment: ReConFig - International Conference on ReConFigurable Computing and FPGAs (2012

    Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

    Full text link
    The rising popularity of intelligent mobile devices and the daunting computational cost of deep learning-based models call for efficient and accurate on-device inference schemes. We propose a quantization scheme that allows inference to be carried out using integer-only arithmetic, which can be implemented more efficiently than floating point inference on commonly available integer-only hardware. We also co-design a training procedure to preserve end-to-end model accuracy post quantization. As a result, the proposed quantization scheme improves the tradeoff between accuracy and on-device latency. The improvements are significant even on MobileNets, a model family known for run-time efficiency, and are demonstrated in ImageNet classification and COCO detection on popular CPUs.Comment: 14 pages, 12 figure

    Mapping DSP algorithms to a reconfigurable architecture Adaptive Wireless Networking (AWGN)

    Get PDF
    This report will discuss the Adaptive Wireless Networking project. The vision of the Adaptive Wireless Networking project will be given. The strategy of the project will be the implementation of multiple communication systems in dynamically reconfigurable heterogeneous hardware. An overview of a wireless LAN communication system, namely HiperLAN/2, and a Bluetooth communication system will be given. Possible implementations of these systems in a dynamically reconfigurable architecture are discussed. Suggestions for future activities in the Adaptive Wireless Networking project are also given
    corecore