55 research outputs found

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    From Biological Synapses to "Intelligent" Robots

    Get PDF
    This selective review explores biologically inspired learning as a model for intelligent robot control and sensing technology on the basis of specific examples. Hebbian synaptic learning is discussed as a functionally relevant model for machine learning and intelligence, as explained on the basis of examples from the highly plastic biological neural networks of invertebrates and vertebrates. Its potential for adaptive learning and control without supervision, the generation of functional complexity, and control architectures based on self-organization is brought forward. Learning without prior knowledge based on excitatory and inhibitory neural mechanisms accounts for the process through which survival-relevant or task-relevant representations are either reinforced or suppressed. The basic mechanisms of unsupervised biological learning drive synaptic plasticity and adaptation for behavioral success in living brains with different levels of complexity. The insights collected here point toward the Hebbian model as a choice solution for “intelligent” robotics and sensor systems. Keywords: Hebbian learning; synaptic plasticity; neural networks; self-organization; brain; reinforcement; sensory processing; robot contro

    Reactive direction control for a mobile robot: A locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated

    Get PDF
    Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to the image of an approaching object. These neurons are called the lobula giant movement detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the development of an LGMD model for use as an artificial collision detector in robotic applications. To date, robots have been equipped with only a single, central artificial LGMD sensor, and this triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly, for a robot to behave autonomously, it must react differently to stimuli approaching from different directions. In this study, we implement a bilateral pair of LGMD models in Khepera robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD models using methodologies inspired by research on escape direction control in cockroaches. Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration, the khepera robots could escape an approaching threat in real time and with a similar distribution of escape directions as real locusts. We also found that by optimising these algorithms, we could use them to integrate the left and right DCMD responses of real jumping locusts offline and reproduce the actual escape directions that the locusts took in a particular trial. Our results significantly advance the development of an artificial collision detection and evasion system based on the locust LGMD by allowing it reactive control over robot behaviour. The success of this approach may also indicate some important areas to be pursued in future biological research

    An Artificial Synaptic Plasticity Mechanism for Classical Conditioning with Neural Networks

    Get PDF
    We present an artificial synaptic plasticity (ASP) mechanism that allows artificial systems to make associations between environmental stimuli and learn new skills at runtime. ASP builds on the classical neural network for simulating associative learning, which is induced through a conditioning-like procedure. Experiments in a simulated mobile robot demonstrate that ASP has successfully generated conditioned responses. The robot has learned during environmental exploration to use sensors added after training, improving its object-avoidance capabilities

    Rare neural correlations implement robotic conditioning with delayed rewards and disturbances

    Get PDF
    Neural conditioning associates cues and actions with following rewards. The environments in which robots operate, however, are pervaded by a variety of disturbing stimuli and uncertain timing. In particular, variable reward delays make it difficult to reconstruct which previous actions are responsible for following rewards. Such an uncertainty is handled by biological neural networks, but represents a challenge for computational models, suggesting the lack of a satisfactory theory for robotic neural conditioning. The present study demonstrates the use of rare neural correlations in making correct associations between rewards and previous cues or actions. Rare correlations are functional in selecting sparse synapses to be eligible for later weight updates if a reward occurs. The repetition of this process singles out the associating and reward-triggering pathways, and thereby copes with distal rewards. The neural network displays macro-level classical and operant conditioning, which is demonstrated in an interactive real-life human-robot interaction. The proposed mechanism models realistic conditioning in humans and animals and implements similar behaviors in neuro-robotic platforms

    The Development of Bio-Inspired Cortical Feature Maps for Robot Sensorimotor Controllers

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.This project applies principles from the field of Computational Neuroscience to Robotics research, in particular to develop systems inspired by how nature manages to solve sensorimotor coordination tasks. The overall aim has been to build a self-organising sensorimotor system using biologically inspired techniques based upon human cortical development which can in the future be implemented in neuromorphic hardware. This can then deliver the benefits of low power consumption and real time operation but with flexible learning onboard autonomous robots. A core principle is the Self-Organising Feature Map which is based upon the theory of how 2D maps develop in real cortex to represent complex information from the environment. A framework for developing feature maps for both motor and visual directional selectivity representing eight different directions of motion is described as well as how they can be coupled together to make a basic visuomotor system. In contrast to many previous works which use artificially generated visual inputs (for example, image sequences of oriented moving bars or mathematically generated Gaussian bars) a novel feature of the current work is that the visual input is generated by a DVS 128 silicon retina camera which is a neuromorphic device and produces spike events in a frame-free way. One of the main contributions of this work has been to develop a method of autonomous regulation of the map development process which adapts the learning dependent upon input activity. The main results show that distinct directionally selective maps for both the motor and visual modalities are produced under a range of experimental scenarios. The adaptive learning process successfully controls the rate of learning in both motor and visual map development and is used to indicate when sufficient patterns have been presented, thus avoiding the need to define in advance the quantity and range of training data. The coupling training experiments show that the visual input learns to modulate the original motor map response, creating a new visual-motor topological map.EPSRC, University of Plymouth Graduate Schoo

    Evolutionary and Computational Advantages of Neuromodulated Plasticity

    Get PDF
    The integration of modulatory neurons into evolutionary artificial neural networks is proposed here. A model of modulatory neurons was devised to describe a plasticity mechanism at the low level of synapses and neurons. No initial assumptions were made on the network structures or on the system level dynamics. The work of this thesis studied the outset of high level system dynamics that emerged employing the low level mechanism of neuromodulated plasticity. Fully-fledged control networks were designed by simulated evolution: an evolutionary algorithm could evolve networks with arbitrary size and topology using standard and modulatory neurons as building blocks. A set of dynamic, reward-based environments was implemented with the purpose of eliciting the outset of learning and memory in networks. The evolutionary time and the performance of solutions were compared for networks that could or could not use modulatory neurons. The experimental results demonstrated that modulatory neurons provide an evolutionary advantage that increases with the complexity of the control problem. Networks with modulatory neurons were also observed to evolve alternative neural control structures with respect to networks without neuromodulation. Different network topologies were observed to lead to a computational advantage such as faster input-output signal processing. The evolutionary and computational advantages induced by modulatory neurons strongly suggest the important role of neuromodulated plasticity for the evolution of networks that require temporal neural dynamics, adaptivity and memory functions

    Обучение с подкреплением спайковнейронной сети в задаче управления агентомой в дискретной виртуальной среде

    Get PDF
    В работе описываются методы обучения с подкреплением спайковой нейронной сети, управляющей роботом или интеллектуальным агентом. Применение спайковых нейронов в качестве базовых элементов сети позволяет использовать как пространственную, так и временную структуру входной сенсорной информации. Обучение сети производится с помощью подкрепляющих сигналов, идущих из внешней среды и отражающих степень успешности недавно выполненных агентом действий. Максимизация получаемого подкрепления ведется путем модулированной минимизации информационной энтропии функционирования нейрона, которая зависит от весов нейронов. Полученные законы изменения весов близки к явлениям синаптической пластичности, наблюдающейся в реальных нейронах. Работа алгоритма обучения с подкреплением проверяется на тестовой задаче поиска ресурсов агентом в дискретной виртуальной среде
    corecore