5,310 research outputs found

    On unrooted and root-uncertain variants of several well-known phylogenetic network problems

    Get PDF
    The hybridization number problem requires us to embed a set of binary rooted phylogenetic trees into a binary rooted phylogenetic network such that the number of nodes with indegree two is minimized. However, from a biological point of view accurately inferring the root location in a phylogenetic tree is notoriously difficult and poor root placement can artificially inflate the hybridization number. To this end we study a number of relaxed variants of this problem. We start by showing that the fundamental problem of determining whether an \emph{unrooted} phylogenetic network displays (i.e. embeds) an \emph{unrooted} phylogenetic tree, is NP-hard. On the positive side we show that this problem is FPT in reticulation number. In the rooted case the corresponding FPT result is trivial, but here we require more subtle argumentation. Next we show that the hybridization number problem for unrooted networks (when given two unrooted trees) is equivalent to the problem of computing the Tree Bisection and Reconnect (TBR) distance of the two unrooted trees. In the third part of the paper we consider the "root uncertain" variant of hybridization number. Here we are free to choose the root location in each of a set of unrooted input trees such that the hybridization number of the resulting rooted trees is minimized. On the negative side we show that this problem is APX-hard. On the positive side, we show that the problem is FPT in the hybridization number, via kernelization, for any number of input trees.Comment: 28 pages, 8 Figure

    On Computing the Maximum Parsimony Score of a Phylogenetic Network

    Get PDF
    Phylogenetic networks are used to display the relationship of different species whose evolution is not treelike, which is the case, for instance, in the presence of hybridization events or horizontal gene transfers. Tree inference methods such as Maximum Parsimony need to be modified in order to be applicable to networks. In this paper, we discuss two different definitions of Maximum Parsimony on networks, "hardwired" and "softwired", and examine the complexity of computing them given a network topology and a character. By exploiting a link with the problem Multicut, we show that computing the hardwired parsimony score for 2-state characters is polynomial-time solvable, while for characters with more states this problem becomes NP-hard but is still approximable and fixed parameter tractable in the parsimony score. On the other hand we show that, for the softwired definition, obtaining even weak approximation guarantees is already difficult for binary characters and restricted network topologies, and fixed-parameter tractable algorithms in the parsimony score are unlikely. On the positive side we show that computing the softwired parsimony score is fixed-parameter tractable in the level of the network, a natural parameter describing how tangled reticulate activity is in the network. Finally, we show that both the hardwired and softwired parsimony score can be computed efficiently using Integer Linear Programming. The software has been made freely available

    When two trees go to war

    Get PDF
    Rooted phylogenetic networks are often constructed by combining trees, clusters, triplets or characters into a single network that in some well-defined sense simultaneously represents them all. We review these four models and investigate how they are related. In general, the model chosen influences the minimum number of reticulation events required. However, when one obtains the input data from two binary trees, we show that the minimum number of reticulations is independent of the model. The number of reticulations necessary to represent the trees, triplets, clusters (in the softwired sense) and characters (with unrestricted multiple crossover recombination) are all equal. Furthermore, we show that these results also hold when not the number of reticulations but the level of the constructed network is minimised. We use these unification results to settle several complexity questions that have been open in the field for some time. We also give explicit examples to show that already for data obtained from three binary trees the models begin to diverge

    Convex Graph Invariant Relaxations For Graph Edit Distance

    Get PDF
    The edit distance between two graphs is a widely used measure of similarity that evaluates the smallest number of vertex and edge deletions/insertions required to transform one graph to another. It is NP-hard to compute in general, and a large number of heuristics have been proposed for approximating this quantity. With few exceptions, these methods generally provide upper bounds on the edit distance between two graphs. In this paper, we propose a new family of computationally tractable convex relaxations for obtaining lower bounds on graph edit distance. These relaxations can be tailored to the structural properties of the particular graphs via convex graph invariants. Specific examples that we highlight in this paper include constraints on the graph spectrum as well as (tractable approximations of) the stability number and the maximum-cut values of graphs. We prove under suitable conditions that our relaxations are tight (i.e., exactly compute the graph edit distance) when one of the graphs consists of few eigenvalues. We also validate the utility of our framework on synthetic problems as well as real applications involving molecular structure comparison problems in chemistry.Comment: 27 pages, 7 figure
    • …
    corecore