5 research outputs found

    Euler characteristics of Hilbert schemes of points on simple surface singularities

    Get PDF
    We study the geometry and topology of Hilbert schemes of points on the orbifold surface [C^2/G], respectively the singular quotient surface C^2/G, where G is a finite subgroup of SL(2,C) of type A or D. We give a decomposition of the (equivariant) Hilbert scheme of the orbifold into affine space strata indexed by a certain combinatorial set, the set of Young walls. The generating series of Euler characteristics of Hilbert schemes of points of the singular surface of type A or D is computed in terms of an explicit formula involving a specialized character of the basic representation of the corresponding affine Lie algebra; we conjecture that the same result holds also in type E. Our results are consistent with known results in type A, and are new for type D.Comment: 57 pages, final version. To appear in European Journal of Mathematic

    Applied Mathematics and Computational Physics

    Get PDF
    As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications

    Gratings: Theory and Numeric Applications, Second Revisited Edition

    Get PDF
    International audienceThe second Edition of the Book contains 13 chapters, written by an international team of specialist in electromagnetic theory, numerical methods for modelling of light diffraction by periodic structures having one-, two-, or three-dimensional periodicity, and aiming numerous applications in many classical domains like optical engineering, spectroscopy, and optical telecommunications, together with newly born fields such as photonics, plasmonics, photovoltaics, metamaterials studies, cloaking, negative refraction, and super-lensing. Each chapter presents in detail a specific theoretical method aiming to a direct numerical application by university and industrial researchers and engineers.In comparison with the First Edition, we have added two more chapters (ch.12 and ch.13), and revised four other chapters (ch.6, ch.7, ch.10, and ch.11

    Astrophysical materials science: Theory

    Get PDF
    Research papers of the discoveries and work carried out over the past six or so years are presented. Hydrogen and helium constitute by far the most abundant of the elements and it is no accident that the research has focussed heavily on these elements in their condensed forms, both as pure substances and in mixtures. The research has combined the fundamental with the pragmatic
    corecore