775 research outputs found

    Adversarial Black-Box Attacks on Automatic Speech Recognition Systems using Multi-Objective Evolutionary Optimization

    Full text link
    Fooling deep neural networks with adversarial input have exposed a significant vulnerability in the current state-of-the-art systems in multiple domains. Both black-box and white-box approaches have been used to either replicate the model itself or to craft examples which cause the model to fail. In this work, we propose a framework which uses multi-objective evolutionary optimization to perform both targeted and un-targeted black-box attacks on Automatic Speech Recognition (ASR) systems. We apply this framework on two ASR systems: Deepspeech and Kaldi-ASR, which increases the Word Error Rates (WER) of these systems by upto 980%, indicating the potency of our approach. During both un-targeted and targeted attacks, the adversarial samples maintain a high acoustic similarity of 0.98 and 0.97 with the original audio.Comment: Published in Interspeech 201

    Comparison of Direct Multiobjective Optimization Methods for the Design of Electric Vehicles

    Get PDF
    "System design oriented methodologies" are discussed in this paper through the comparison of multiobjective optimization methods applied to heterogeneous devices in electrical engineering. Avoiding criteria function derivatives, direct optimization algorithms are used. In particular, deterministic geometric methods such as the Hooke & Jeeves heuristic approach are compared with stochastic evolutionary algorithms (Pareto genetic algorithms). Different issues relative to convergence rapidity and robustness on mixed (continuous/discrete), constrained and multiobjective problems are discussed. A typical electrical engineering heterogeneous and multidisciplinary system is considered as a case study: the motor drive of an electric vehicle. Some results emphasize the capacity of each approach to facilitate system analysis and particularly to display couplings between optimization parameters, constraints, objectives and the driving mission

    Effects of Crossover Operations on the Performance of EMO Algorithms

    Get PDF
    This paper visually demonstrates the effect of crossover operations on the performance of EMO algorithms through computational experiments on multi-objective 0/1 knapsack problems. In our computational experiments, we use the NSGA-II algorithm as a representative EMO algorithm. First we compare the performance of the NSGA-II algorithm between two cases: NSGA-II with/without crossover. Experimental results show that the crossover operation has a positive effect on the convergence of solutions to the Pareto front and a negative effect on the diversity of solutions. That is, the crossover operation decreases the diversity of solutions while it improves the convergence of solutions to the Pareto front. Next we examine the effects of recombining similar or dissimilar parents using a similarity-based mating scheme. Experimental results show that the performance of the NSGA-II algorithm is improved by recombining similar parents and degraded by recombining dissimilar ones. Finally we show that the recombination of extreme and similar parents using the similarity-based mating scheme drastically improves the diversity of obtained non-dominated solutions without severely degrading their convergence to the Pareto front. An idea of dynamically controlling the selection pressure toward extreme and similar parents is also illustrated through computational experiments

    Multiobjective evolutionary algorithm based on vector angle neighborhood

    Get PDF
    Selection is a major driving force behind evolution and is a key feature of multiobjective evolutionary algorithms. Selection aims at promoting the survival and reproduction of individuals that are most fitted to a given environment. In the presence of multiple objectives, major challenges faced by this operator come from the need to address both the population convergence and diversity, which are conflicting to a certain extent. This paper proposes a new selection scheme for evolutionary multiobjective optimization. Its distinctive feature is a similarity measure for estimating the population diversity, which is based on the angle between the objective vectors. The smaller the angle, the more similar individuals. The concept of similarity is exploited during the mating by defining the neighborhood and the replacement by determining the most crowded region where the worst individual is identified. The latter is performed on the basis of a convergence measure that plays a major role in guiding the population towards the Pareto optimal front. The proposed algorithm is intended to exploit strengths of decomposition-based approaches in promoting diversity among the population while reducing the user's burden of specifying weight vectors before the search. The proposed approach is validated by computational experiments with state-of-the-art algorithms on problems with different characteristics. The obtained results indicate a highly competitive performance of the proposed approach. Significant advantages are revealed when dealing with problems posing substantial difficulties in keeping diversity, including many-objective problems. The relevance of the suggested similarity and convergence measures are shown. The validity of the approach is also demonstrated on engineering problems.This work was supported by the Portuguese Fundacao para a Ciencia e Tecnologia under grant PEst-C/CTM/LA0025/2013 (Projecto Estrategico - LA 25 - 2013-2014 - Strategic Project - LA 25 - 2013-2014).info:eu-repo/semantics/publishedVersio

    04461 Abstracts Collection -- Practical Approaches to Multi-Objective Optimization

    Get PDF
    From 07.11.04 to 12.11.04, the Dagstuhl Seminar 04461 ``Practical Approaches to Multi-Objective Optimization\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Optimal advertising campaign generation for multiple brands using MOGA

    Get PDF
    The paper proposes a new modified multiobjective genetic algorithm (MOGA) for the problem of optimal television (TV) advertising campaign generation for multiple brands. This NP-hard combinatorial optimization problem with numerous constraints is one of the key issues for an advertising agency when producing the optimal TV mediaplan. The classical approach to the solution of this problem is the greedy heuristic, which relies on the strength of the preceding commercial breaks when selecting the next break to add to the campaign. While the greedy heuristic is capable of generating only a group of solutions that are closely related in the objective space, the proposed modified MOGA produces a Pareto-optimal set of chromosomes that: 1) outperform the greedy heuristic and 2) let the mediaplanner choose from a variety of uniformly distributed tradeoff solutions. To achieve these results, the special problem-specific solution encoding, genetic operators, and original local optimization routine were developed for the algorithm. These techniques allow the algorithm to manipulate with only feasible individuals, thus, significantly improving its performance that is complicated by the problem constraints. The efficiency of the developed optimization method is verified using the real data sets from the Canadian advertising industry

    A test problem for visual investigation of high-dimensional multi-objective search

    Get PDF
    An inherent problem in multiobjective optimization is that the visual observation of solution vectors with four or more objectives is infeasible, which brings major difficulties for algorithmic design, examination, and development. This paper presents a test problem, called the Rectangle problem, to aid the visual investigation of high-dimensional multiobjective search. Key features of the Rectangle problem are that the Pareto optimal solutions 1) lie in a rectangle in the two-variable decision space and 2) are similar (in the sense of Euclidean geometry) to their images in the four-dimensional objective space. In this case, it is easy to examine the behavior of objective vectors in terms of both convergence and diversity, by observing their proximity to the optimal rectangle and their distribution in the rectangle, respectively, in the decision space. Fifteen algorithms are investigated. Underperformance of Pareto-based algorithms as well as most state-of-the-art many-objective algorithms indicates that the proposed problem not only is a good tool to help visually understand the behavior of multiobjective search in a high-dimensional objective space but also can be used as a challenging benchmark function to test algorithms' ability in balancing the convergence and diversity of solutions

    Dominance Based Crossover Operator for Evolutionary Multi-objective Algorithms

    Get PDF
    In spite of the recent quick growth of the Evolutionary Multi-objective Optimization (EMO) research field, there has been few trials to adapt the general variation operators to the particular context of the quest for the Pareto-optimal set. The only exceptions are some mating restrictions that take in account the distance between the potential mates - but contradictory conclusions have been reported. This paper introduces a particular mating restriction for Evolutionary Multi-objective Algorithms, based on the Pareto dominance relation: the partner of a non-dominated individual will be preferably chosen among the individuals of the population that it dominates. Coupled with the BLX crossover operator, two different ways of generating offspring are proposed. This recombination scheme is validated within the well-known NSGA-II framework on three bi-objective benchmark problems and one real-world bi-objective constrained optimization problem. An acceleration of the progress of the population toward the Pareto set is observed on all problems

    On the evolutionary optimisation of many conflicting objectives

    Get PDF
    This inquiry explores the effectiveness of a class of modern evolutionary algorithms, represented by Non-dominated Sorting Genetic Algorithm (NSGA) components, for solving optimisation tasks with many conflicting objectives. Optimiser behaviour is assessed for a grid of mutation and recombination operator configurations. Performance maps are obtained for the dual aims of proximity to, and distribution across, the optimal trade-off surface. Performance sweet-spots for both variation operators are observed to contract as the number of objectives is increased. Classical settings for recombination are shown to be suitable for small numbers of objectives but correspond to very poor performance for higher numbers of objectives, even when large population sizes are used. Explanations for this behaviour are offered via the concepts of dominance resistance and active diversity promotion
    corecore