6,020 research outputs found

    Low-Power In-Circuit testing of a LNA

    Get PDF
    A new technique is proposed to tackle in-circuit testing of embedded RF blocks. It relies on observing the cross-correlation between its output voltage and power supply current, using a translinear cross-correlator circuit. Although a structural test is performed, simulation results show that fault detection criteria can be established based on acceptable deviations of performance characterization parameters. The case of a Low Noise Amplifier is presented

    Spectral Signature Analysis – BIST for RF Front-Ends

    Get PDF
    In this paper, the Spectral Signature Analysis is presented as a concept for an integrable self-test system (Built-In Self-Test – BIST) for RF front-ends is presented. It is based on modelling the whole RF front-end (transmitter and receiver) on system level, on generating of a Spectral Signature and of evaluating of the Signature Response. Because of using multi-carrier signal as the test signature, the concept is especially useful for tests of linearity and frequency response of front-ends. Due to the presented method of signature response evaluation, this concept can be used for Built-In Self-Correction (BISC) at critical building blocks

    Constraint-driven RF test stimulus generation and built-in test

    Get PDF
    With the explosive growth in wireless applications, the last decade witnessed an ever-increasing test challenge for radio frequency (RF) circuits. While the design community has pushed the envelope far into the future, by expanding CMOS process to be used with high-frequency wireless devices, test methodology has not advanced at the same pace. Consequently, testing such devices has become a major bottleneck in high-volume production, further driven by the growing need for tighter quality control. RF devices undergo testing during the prototype phase and during high-volume manufacturing (HVM). The benchtop test equipment used throughout prototyping is very precise yet specialized for a subset of functionalities. HVM calls for a different kind of test paradigm that emphasizes throughput and sufficiency, during which the projected performance parameters are measured one by one for each device by automated test equipment (ATE) and compared against defined limits called specifications. The set of tests required for each product differs greatly in terms of the equipment required and the time taken to test individual devices. Together with signal integrity, precision, and repeatability concerns, the initial cost of RF ATE is prohibitively high. As more functionality and protocols are integrated into a single RF device, the required number of specifications to be tested also increases, adding to the overall cost of testing, both in terms of the initial and recurring operating costs. In addition to the cost problem, RF testing proposes another challenge when these components are integrated into package-level system solutions. In systems-on-packages (SOP), the test problems resulting from signal integrity, input/output bandwidth (IO), and limited controllability and observability have initiated a paradigm shift in high-speed analog testing, favoring alternative approaches such as built-in tests (BIT) where the test functionality is brought into the package. This scheme can make use of a low-cost external tester connected through a low-bandwidth link in order to perform demanding response evaluations, as well as make use of the analog-to-digital converters and the digital signal processors available in the package to facilitate testing. Although research on analog built-in test has demonstrated hardware solutions for single specifications, the paradigm shift calls for a rather general approach in which a single methodology can be applied across different devices, and multiple specifications can be verified through a single test hardware unit, minimizing the area overhead. Specification-based alternate test methodology provides a suitable and flexible platform for handling the challenges addressed above. In this thesis, a framework that integrates ATE and system constraints into test stimulus generation and test response extraction is presented for the efficient production testing of high-performance RF devices using specification-based alternate tests. The main components of the presented framework are as follows: Constraint-driven RF alternate test stimulus generation: An automated test stimulus generation algorithm for RF devices that are evaluated by a specification-based alternate test solution is developed. The high-level models of the test signal path define constraints in the search space of the optimized test stimulus. These models are generated in enough detail such that they inherently define limitations of the low-cost ATE and the I/O restrictions of the device under test (DUT), yet they are simple enough that the non-linear optimization problem can be solved empirically in a reasonable amount of time. Feature extractors for BIT: A methodology for the built-in testing of RF devices integrated into SOPs is developed using additional hardware components. These hardware components correlate the high-bandwidth test response to low bandwidth signatures while extracting the test-critical features of the DUT. Supervised learning is used to map these extracted features, which otherwise are too complicated to decipher by plain mathematical analysis, into the specifications under test. Defect-based alternate testing of RF circuits: A methodology for the efficient testing of RF devices with low-cost defect-based alternate tests is developed. The signature of the DUT is probabilistically compared with a class of defect-free device signatures to explore possible corners under acceptable levels of process parameter variations. Such a defect filter applies discrimination rules generated by a supervised classifier and eliminates the need for a library of possible catastrophic defects.Ph.D.Committee Chair: Chatterjee, Abhijit; Committee Member: Durgin, Greg; Committee Member: Keezer, David; Committee Member: Milor, Linda; Committee Member: Sitaraman, Sures

    Efficient functional built-in test for RF systems using two-tone response envelope analysis

    Get PDF
    Trabajo presentado al AFRICON celebrado en Nairobi del 23 al 25 de septiembre de 2009.This paper presents a novel and low-cost methodology that can be used for testing RF blocks embedded in complex SoCs. It is based on the detection and spectral analysis of the two-tone response envelope of the block under test. The main non-linearity specifications of the block under test can be easily extracted from the envelope signal. The analytical basis of the proposed methodology is demonstrated, and a proposal for its implementation as a built-in test core is discussed. Finally, practical simulation examples show the feasibility of the approach.This work has been partially supported by the Spanish Ministry of Innovation through project TEST (TEC2007-68072/MIC) and CATRENE's project TOETS.Peer Reviewe

    Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept

    Get PDF
    This Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept document was developed as a first step in developing the Component-Level Electronic-Assembly Repair (CLEAR) System Architecture (NASA/TM-2011-216956). The CLEAR operational concept defines how the system will be used by the Constellation Program and what needs it meets. The document creates scenarios for major elements of the CLEAR architecture. These scenarios are generic enough to apply to near-Earth, Moon, and Mars missions. The CLEAR operational concept involves basic assumptions about the overall program architecture and interactions with the CLEAR system architecture. The assumptions include spacecraft and operational constraints for near-Earth orbit, Moon, and Mars missions. This document addresses an incremental development strategy where capabilities evolve over time, but it is structured to prevent obsolescence. The approach minimizes flight hardware by exploiting Internet-like telecommunications that enables CLEAR capabilities to remain on Earth and to be uplinked as needed. To minimize crew time and operational cost, CLEAR exploits offline development and validation to support online teleoperations. Operational concept scenarios are developed for diagnostics, repair, and functional test operations. Many of the supporting functions defined in these operational scenarios are further defined as technologies in NASA/TM-2011-216956

    Human Sensing via Passive Spectrum Monitoring

    Full text link
    Human sensing is significantly improving our lifestyle in many fields such as elderly healthcare and public safety. Research has demonstrated that human activity can alter the passive radio frequency (PRF) spectrum, which represents the passive reception of RF signals in the surrounding environment without actively transmitting a target signal. This paper proposes a novel passive human sensing method that utilizes PRF spectrum alteration as a biometrics modality for human authentication, localization, and activity recognition. The proposed method uses software-defined radio (SDR) technology to acquire the PRF in the frequency band sensitive to human signature. Additionally, the PRF spectrum signatures are classified and regressed by five machine learning (ML) algorithms based on different human sensing tasks. The proposed Sensing Humans among Passive Radio Frequency (SHAPR) method was tested in several environments and scenarios, including a laboratory, a living room, a classroom, and a vehicle, to verify its extensiveness. The experimental results show that the SHAPR method achieved more than 95% accuracy in the four scenarios for the three human sensing tasks, with a localization error of less than 0.8 m. These results indicate that the SHAPR technique can be considered a new human signature modality with high accuracy, robustness, and general applicability

    An embedded tester core for mixed-signal System-on-Chip circuits

    Get PDF

    A Case Study Of E-Supply Chain & Business Process Reengineering Of A Semiconductor Company In Malaysia

    Get PDF
    Penglibatan e-perniagaan dalam rantaian bekalan telah mewujudkan e-rantaian bekalan yang baru (e-SC) di firma-firma tempatan dan global. Due to globalization and advancement in information technology (IT), companies adopt best practices in e-business and supply chain management to be globally competitive as both are realities and prospects in 21st century

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits
    corecore