616 research outputs found

    Adaptive design of delta sigma modulators

    Full text link
    In this thesis, a genetic algorithm based on differential evolution (DE) is used to generate delta sigma modulator (DSM) noise transfer functions (NTFs). These NTFs outperform those generated by an iterative approach described by Schreier and implemented in the delsig Matlab toolbox. Several lowpass and bandpass DSMs, as well as DSM\u27s designed specifically for and very low intermediate frequency (VLIF) receivers are designed using the algorithm developed in this thesis and compared to designs made using the delsig toolbox. The NTFs designed using the DE algorithm always have a higher dynamic range and signal to noise ratio than those designed using the delsig toolbox

    Contribution to the design of continuous -time Sigma - Delta Modulators based on time delay elements

    Get PDF
    The research carried out in this thesis is focused in the development of a new class of data converters for digital radio. There are two main architectures for communication receivers which perform a digital demodulation. One of them is based on analog demodulation to the base band and digitization of the I/Q components. Another option is to digitize the band pass signal at the output of the IF stage using a bandpass Sigma-Delta modulator. Bandpass Sigma- Delta modulators can be implemented with discrete-time circuits, using switched capacitors or continuous-time circuits. The main innovation introduced in this work is the use of passive transmission lines in the loop filter of a bandpass continuous-time Sigma-Delta modulator instead of the conventional solution with gm-C or LC resonators. As long as transmission lines are used as replacement of a LC resonator in RF technology, it seems compelling that transmission lines could improve bandpass continuous-time Sigma-Delta modulators. The analysis of a Sigma- Delta modulator using distributed resonators has led to a completely new family of Sigma- Delta modulators which possess properties inherited both from continuous-time and discretetime Sigma-Delta modulators. In this thesis we present the basic theory and the practical design trade-offs of this new family of Sigma-Delta modulators. Three demonstration chips have been implemented to validate the theoretical developments. The first two are a proof of concept of the application of transmission lines to build lowpass and bandpass modulators. The third chip summarizes all the contributions of the thesis. It consists of a transmission line Sigma-Delta modulator which combines subsampling techniques, a mismatch insensitive circuitry and a quadrature architecture to implement the IF to digital stage of a receiver

    Multiband Analog-to-Digital Conversion

    Get PDF
    The current trend in the world of digital communications is the design of versatile devices that may operate using several different communication standards in order to increase the number of locations for which a particular device may be used. The signal is quantized early on in the reciever path by Analog-to-Digital Converters (ADCs), which allows the rest of the signal processing to be done by low complexity, low power digital circuits. For this reason, it is advantageous to create an architecture that can quantize different bandwidths at different frequencies to suit several different communication protocols. This thesis outlines the design of an architecture that uses multiple ADCs in parallel to quantize several different bandwidths of a wideband signal. A multirate filter bank is then applied to approximate perfect reconstruction of the wideband signal from its subband parts. This highly flexible architecture is able to quantize signals of varying bandwidths at a wide range of frequencies by using identical hardware in every channel, which also makes for a simple design. A prototype for the quantizer used in each channel, a frequency-selective fourth-order sigma-delta (CA ) ADC, was designed and fabricated in a 0.5 pm CMOS process. This device uses a switched-capacitor technique to implement the frequency selection in the front-end of the CA ADC in each channel. Running at a 5MHz sample rate, the device can select any of the first sixteen 156.25kHz wide bands for conversion. Testing results for this fabricated part are also presented

    Distributed Massive MIMO via all-Digital Radio Over Fiber

    Get PDF
    A crucial challenge in the implementation of distributed massive multiple-input multiple-output (MIMO) architectures is to provide phase coherence while, at the same time, limit the complexity of the remote-radio heads (RRHs), which is important for cost-efficient scalability. To address this challenge, we present in this paper a phase-coherent distributed MIMO architecture, based on off-the-shelf, low-cost components. In the proposed architecture, up- and down-conversion are carried out at the central unit (CU). The RRHs are connected to the CU by means of optical fibers carrying oversampled radio-frequency (RF) 1-bit signals. In the downlink, the 1-bit signal is generated via sigma-delta modulation. At the RRH, the RF signal is recovered from the 1-bit signal through a bandpass filter and a power amplifier, and then fed to an antenna. In the uplink, the 1-bit signal is generated by a comparator whose inputs are the low-noise-amplified received RF signal and a suitably designed dither signal. The performance of the proposed architecture is evaluated with satisfactory results both via simulation and measurements from a testbed
    • 

    corecore