993 research outputs found

    Design, analysis and implementation of voltage sensor for power-constrained systems

    Get PDF
    PhD ThesisThanks to an extensive effort by the global research community, the electronic technology has significantly matured over the last decade. This technology has enabled certain operations which humans could not otherwise easily perform. For instance, electronic systems can be used to perform sensing, monitoring and even control operations in environments such as outer space, underground, under the sea or even inside the human body. The main difficulty for electronics operating in these environments is access to a reliable and permanent source of energy. Using batteries as the immediate solution for this problem has helped to provide energy for limited periods of time; however, regular maintenance and replacement are required. Consequently, battery solutions fail wherever replacing them is not possible or operation for long periods is needed. For such cases, researchers have proposed harvesting ambient energy and converting it into an electrical form. An important issue with energy harvesters is that their operation and output power depend critically on the amount of energy they receive and because ambient energy often tends to be sporadic in nature, energy harvesters cannot produce stable or fixed levels of power all of the time. Therefore, electronic devices powered in this way must be capable of adapting their operation to the energy status of the harvester. To achieve this, information on the energy available for use is needed. This can be provided by a sensor capable of measuring voltage. However, stable and fixed voltage and time references are a prerequisite of most traditional voltage measurement devices, but these generally do not exist in energy harvesting environments. A further challenge is that such a sensor also needs to be powered by the energy harvester’s unstable voltage. In this thesis, the design of a reference-free voltage sensor, which can operate with a varying voltage source, is provided based on the capture of a portion of the total energy which is directly related to II the energy being sensed. This energy is then used to power a computation which quantifies captured energy over time, with the information directly generated as digital code. The sensor was fabricated in the 180 nm technology node and successfully tested by performing voltage measurements over the range 1.8 V to 0.8 V

    Energy autonomous systems : future trends in devices, technology, and systems

    Get PDF
    The rapid evolution of electronic devices since the beginning of the nanoelectronics era has brought about exceptional computational power in an ever shrinking system footprint. This has enabled among others the wealth of nomadic battery powered wireless systems (smart phones, mp3 players, GPS, …) that society currently enjoys. Emerging integration technologies enabling even smaller volumes and the associated increased functional density may bring about a new revolution in systems targeting wearable healthcare, wellness, lifestyle and industrial monitoring applications

    Image compression and energy harvesting for energy constrained sensors

    Get PDF
    Title from PDF of title page, viewed on June 21, 2013Dissertation advisor: Walter D. Leon-SalasVitaIncludes bibliographic references (pages 176-[187])Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2013The advances in complementary metal-oxide-semiconductor (CMOS) technology have led to the integration of all components of electronic system into a single integrated circuit. Ultra-low power circuit techniques have reduced the power consumption of circuits. Moreover, solar cells with improved efficiency can be integrated on chip to harvest energy from sunlight. As a result of all the above, a new class of miniaturized electronic systems known as self-powered system on a chip has emerged. There is an increasing research interest in the area of self-powered devices which provide cost-effective solutions especially when these devices are used in the areas that changing or replacing batteries is too costly. Therefore, image compression and energy harvesting are studied in this dissertation. The integration of energy harvesting, image compression, and an image sensor on the same chip provides the energy source to charge a battery, reduces the data rate, and improves the performance of wireless image sensors. Integrated circuits of image compression, solar energy harvesting, and image sensors are studied, designed, and analyzed in this work. In this dissertation, a hybrid image sensor that can perform the tasks of sensing and energy harvesting is presented. Photodiodes of hybrid image sensor can be programmed as image sensors or energy harvesting cells. The hybrid image sensor can harvest energy in between frames, in sleep mode, and even when it is taking images. When sensing images and harvesting energy are both needed at the same time, some pixels have to work as sensing pixels, and the others have to work as solar cells. Since some pixels are devoted to harvest energy, the resolution of the image will be reduced. To preserve the resolution or to keep the fair resolution when a lot of energy collection is needed, image reconstruction algorithms and compressive sensing theory provide solutions to achieve a good image quality. On the other hand, when the battery has enough charge, image compression comes into the picture. Multiresolution decomposition image compression provides a way to compress image data in order to reduce the energy need from data transmission. The solution provided in this dissertation not only harvests energy but also saves energy resulting long lasting wireless sensors. The problem was first studied at the system level to identify the best system-level configuration which was then implemented on silicon. As a proof of concept, a 32 x 32 array of hybrid image sensor, a 32 x 32 array of image sensor with multiresolution decomposition compression, and a compressive sensing converter have been designed and fabricated in a standard 0.5 [micrometer] CMOS process. Printed circuit broads also have been designed to test and verify the proposed and fabricated chips. VHDL and Matlab codes were written to generate the proper signals to control, and read out data from chips. Image processing and recovery were carried out in Matlab. DC-DC converters were designed to boost the inherently low voltage output of the photodiodes. The DC-DC converter has also been improved to increase the efficiency of power transformation.Introduction -- Hybrid imager system and circuit design -- Hybrid imager energy harvesting and image acquisition results and discussion -- Detailed description and mathematical analysis for a circuit of energy harvesting using on-chip solar cells -- Multiresolution decomposition for lossless and near-lossless compression -- An incremental [sigma-delta] converter for compressive sensing -- Detailed description of a sigma-delta random demodulator converter architecture for compressive sensing applications -- Conclusion -- Appendix A. Chip pin-out -- Appendix B. Schematics -- Appendix C. Pictures of custom PC

    Interface Circuits for Microsensor Integrated Systems

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.

    Evaluation of Sigma-Delta-over-Fiber for High-Speed Wireless Applications

    Get PDF
    Future mobile communication networks aim to increase the communication speed,\ua0provide better reliability and improve the coverage. It needs to achieve all of these enhancements, while the number of users are increasing drastically. As a result, new base-station (BS) architectures where the signal processing is centralized and wireless access is provided through multiple, carefully coordinated remote radio heads are needed. Sigma-delta-over-fiber (SDoF) is a communication technique that can address both requirements and enable very low-complexity, phase coherent remote radio transmission, while transmitting wide-band communication signals with high quality. This thesis investigates the potential and limitations of SDoF communication links as an enabler for future mobile networks.In the first part of the thesis, an ultra-high-speed SDoF link is realized by using state-of-the-art vertical-cavity surface-emitting-lasers (VCSEL). The effects of VCSEL characteristics on such links in terms of signal quality, energy efficiency and potential lifespan is investigated. Furthermore, the potential and limitations of UHS-SDoF are evaluated with signals having various parameters. The results show that, low-cost, reliable, energy efficient, high signal quality SDoF links can be formed by using emerging VCSEL technology. Therefore, ultra-high-speed SDoF is a very promising technique for beyond 10~GHz communication systems.In the second part of the thesis, a multiple-input-multiple-output (MIMO) communication testbed with physically separated antenna elements, distributed-MIMO, is formed by multiple SDoF links. It is shown that the digital up-conversion, performed with a shared local-oscillator/clock at the central unit, provides excellent phase coherency between the physically distributed antenna elements. The proposed testbed demonstrates the advantages of SDoF for realizing distributed MIMO systems and is a powerful tool to perform various communication experiments in real environments.In general, SDoF is a solution for the downlink of a communication system, i.e. from central unit to remote radio head, however, the low complexity and low cost requirement of the remote radio heads makes it difficult to realize the uplinks of such systems. The third part of this thesis proposes an all-digital solution for realizing complementary uplinks for SDoF systems. The proposed structure is extensively investigated through simulations and measurements and the results demonstrate that it is possible realize all-digital, duplex, optical communication links between central units and remote radio heads.In summary, the results in this thesis demonstrate the potential of SDoF for wideband, distributed MIMO communication systems and proposes a new architecture for all-digital duplex communication links. Overall, the thesis shows that SDoF technique is powerful technique for emerging and future mobile communication networks, since it enables a centralized structure with low complexity remote radio heads and provides high signal quality

    Customized multichannel measurement system for microbial fuel cell characterization

    Get PDF
    This work presents the development of an automatic and customized measuring system employing sigma-delta analog-to-digital converters and transimpedance amplifiers for precise mea- surements of voltage and current signals generated by microbial fuel cells (MFCs). The system can perform multi-step discharge protocols to accurately measure the power output of MFCs, and has been calibrated to ensure high precision and low noise measurements. One of the key features of the proposed measuring system is its ability to conduct long-term measurements with variable time steps. Moreover, it is portable and cost-effective, making it ideal for use in laboratories without sophisti- cated bench instrumentation. The system is expandable, ranging from 2 to 12 channels by adding dual-channel boards, which allows for testing of multiple MFCs simultaneously. The functionality of the system was tested using a six-channel setup, and the results demonstrated its ability to detect and distinguish current signals from different MFCs with varying output characteristics. The power measurements obtained using the system also allow for the determination of the output resistance of the MFCs being tested. Overall, the developed measuring system is a useful tool for characterizing the performance of MFCs, and can be helpful in the optimization and development of sustainable energy production technologies

    Doctor of Philosophy

    Get PDF
    dissertationAdvancements in process technology and circuit techniques have enabled the creation of small chemical microsystems for use in a wide variety of biomedical and sensing applications. For applications requiring a small microsystem, many components can be integrated onto a single chip. This dissertation presents many low-power circuits, digital and analog, integrated onto a single chip called the Utah Microcontroller. To guide the design decisions for each of these components, two specific microsystems have been selected as target applications: a Smart Intravaginal Ring (S-IVR) and an NO releasing catheter. Both of these applications share the challenging requirements of integrating a large variety of low-power mixed-signal circuitry onto a single chip. These applications represent the requirements of a broad variety of small low-power sensing systems. In the course of the development of the Utah Microcontroller, several unique and significant contributions were made. A central component of the Utah Microcontroller is the WIMS Microprocessor, which incorporates a low-power feature called a scratchpad memory. For the first time, an analysis of scaling trends projected that scratchpad memories will continue to save power for the foreseeable future. This conclusion was bolstered by measured data from a fabricated microcontroller. In a 32 nm version of the WIMS Microprocessor, the scratchpad memory is projected to save ~10-30% of memory access energy depending upon the characteristics of the embedded program. Close examination of application requirements informed the design of an analog-to-digital converter, and a unique single-opamp buffered charge scaling DAC was developed to minimize power consumption. The opamp was designed to simultaneously meet the varied demands of many chip components to maximize circuit reuse. Each of these components are functional, have been integrated, fabricated, and tested. This dissertation successfully demonstrates that the needs of emerging small low-power microsystems can be met in advanced process nodes with the incorporation of low-power circuit techniques and design choices driven by application requirements

    A Survey about Acquisition System Design for Myoelectric Prosthesis

    Full text link
    According to the World Health Organization (WHO), 30 million people are in need of prosthetic and orthotic devices. Some people are born with this limb loss, while others lose limbs due to diseases such as Cancer, diabetes, and work accidents. Additionally, limb amputation is among the most severe and heavily reported injuries among veterans during war. The medical applications of integrated circuit technology have recently made significant advances, thus improving human quality of life. Moreover, the use of microelectronics integration dominates a lot of medical applications, especially portable and wearable battery-operated devices. Thus, the objective of this report is to provide the reader with the basic understanding of integrated solutions for controlling prosthetic limbs
    • …
    corecore