15 research outputs found

    Millimeter-Wave Super-Regenerative Receivers for Wireless Communication and Radar

    Get PDF
    Today’s world is becoming increasingly automated and interconnected with billions of smart devices coming online, leading to a steep rise in energy consumption from small microelectronics. This coincides with an urgent push to transform global energy production to green energies, causing disruptions and energy shortages, and making the case for efficient energy use ever more pressing. Two major areas where high growth is expected are the fields of wireless communication and radar sensors. Millimeter-wave frequency bands are planned for fifth-generation (5G) and sixth-generation (6G) cellular communication standards, as well as automotive frequency-modulated continuous wave (FMCW) radar systems for driving assistance and automation. Fast silicon-based technologies enable these advances by operating at high maximum frequencies, such as the silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) technologies. However, even the fastest transistors suffer from low and energy expensive gains at millimeter-wave frequencies. Rather than incremental improvements in circuit efficiency using conventional approaches, a disruptive revolution for green microelectronics could be enabled by exploring the low-power benefits of the super-regenerative receiver for some applications. The super-regenerative receiver uses a regenerative oscillator circuit to increase the gain by positive feedback, through coupling energy from the output back into the input. Careful bias and control of the circuit enables a very large gain from a small number of transistors and a very low energy dissipation. Thus, the super-regenerative oscillator could be used to replace amplifier circuits in high data rate wireless communication systems, or as active reflectors to increase the range of FMCW radar systems, greatly reducing the power consumption. The work in this thesis presents fundamental scientific research into the topic of energy-efficient millimeter-wave super-regenerative receivers for use in civilian wireless communication and radar applications. This research work covers the theory, analysis, and simulations, all the way up to the proof of concept, hardware realization, and experimental characterization. Analysis and modeling of regenerative oscillator circuits is presented and used to improve the understanding of the circuit operation, as well as design goals according to the specific application needs. Integrated circuits are investigated and characterized as a proof of concept for a high data rate wireless communication system operating between 140–220 GHz, and an automotive radar system operating at 60 GHz. Amplitude and phase regeneration capabilities for complex modulation are investigated, and principles for spectrum characterization are derived. The circuits are designed and fabricated in a 130 nm SiGe HBT technology, combining bipolar and complementary metal-oxide semiconductor (BiCMOS) transistors. To prove the feasibility of the research concepts, the work achieves a wireless communication link at 16 Gbit/s over 20 cm distance with quadrature amplitude modulation (QAM), which is a world record for the highest data rate ever reported in super-regenerative circuits. This was powered by a super-regenerative oscillator circuit operating at 180 GHz and providing 58 dB of gain. Energy efficiency is also considerably high, drawing 8.8 mW of dc power consumption, which corresponds to a highly efficient 0.6 pJ/bit. Packaging and module integration innovations were implemented for the system experiments, and additional broadband circuits were investigated to generate custom quench waveforms to further enhance the data rate. For radar active reflectors, a regenerative gain of 80 dB is achieved at 60 GHz from a single circuit, which is the best in its frequency range, despite a low dc power consumption of 25 mW

    GigaHertz Symposium 2010

    Get PDF

    Frequency Synthesizers and Oscillator Architectures Based on Multi-Order Harmonic Generation

    Get PDF
    Frequency synthesizers are essential components for modern wireless and wireline communication systems as they provide the local oscillator signal required to transmit and receive data at very high rates. They are also vital for computing devices and microcontrollers as they generate the clocks required to run all the digital circuitry responsible for the high speed computations. Data rates and clocking speeds are continuously increasing to accommodate for the ever growing demand on data and computational power. This places stringent requirements on the performance metrics of frequency synthesizers. They are required to run at higher speeds, cover a wide range of frequencies, provide a low jitter/phase noise output and consume minimum power and area. In this work, we present new techniques and architectures for implementing high speed frequency synthesizers which fulfill the aforementioned requirements. We propose a new architecture and design approach for the realization of wideband millimeter-wave frequency synthesizers. This architecture uses two-step multi-order harmonic generation of a low frequency phase-locked signal to generate wideband mm-wave frequencies. A prototype of the proposed system is designed and fabricated in 90nm Complementary Metal Oxide Semiconductor (CMOS) technology. Measurement results demonstrated that a very wide tuning range of 5 to 32 GHz can be achieved, which is costly to implement using conventional techniques. Moreover the power consumption per octave resembles that of state-of-the art reports. Next, we propose the N-Push cyclic coupled ring oscillator (CCRO) architecture to implement two high performance oscillators: (1) a wideband N-Push/M-Push CCRO operating from 3.16-12.8GHz implemented by two harmonic generation operations using the availability of different phases from the CCRO, and (2) a 13-25GHz millimeter-wave N-Push CCRO with a low phase noise performance of -118dBc/Hz at 10MHz. The proposed oscillators achieve low phase noise with higher FOM than state of the art work. Finally, we present some improvement techniques applied to the performance of phase locked loops (PLLs). We present an adaptive low pass filtering technique which can reduce the reference spur of integer-N charge-pump based PLLs by around 20dB while maintaining the settling time of the original PLL. Another PLL is presented, which features very low power consumption targeting the Medical Implantable Communication Standard. It operates at 402-405 MHz while consuming 600microW from a 1V supply

    Low power rf transceivers

    Get PDF
    This thesis details the analysis and design of ultra-low power radio transceivers operating at microwave frequencies. Hybrid prototypes and Monolithic Microwave Integrated Circuits (MMICs) which achieve power consumptions of less than 1 mW and theoretical operating ranges of over 10 m are described. The motivation behind the design of circuits exhibiting ultra low power consumption and, in the case of the MMICs, small size is the emerging technology of Wireless Sensor Networks (WSN). WSNs consist of spatially distributed ‘nodes’ or ‘specks’ each with their own renewable energy source, one or more sensors, limited memory, processing capability and radio or optical link. The idea is that specks within a ‘speckzone’ cooperate and share computational resources to perform complex tasks such as monitoring fire hazards, radiation levels or for motion tracking. The radio section must be ultra low power e.g. sub 1 mW in order not to drain the limited battery capacity. The radio must also be small in size e.g. less than 5 x 5 mm so that the overall speck size is small. Also, the radio must still be able to operate over a range of at least a metre so as to allow radio contact between, for example, rooms or relatively distant specks. The unsuitability of conventional homodyne topologies to WSNs is discussed and more efficient methods of modulation (On-Off Keying) and demodulation (non-coherent) are presented. Furthermore, it is shown how Super-Regenerative Receivers (SRR) can be used to achieve relatively large output voltages for small input powers. This is important because baseband Op-Amps connected at the RF receiver output generally cannot amplify small signals at the input without the output being saturated in noise (10mV is the smallest measured input for 741 Op-Amp). Instrumentation amplifiers are used in this work as they can amplify signals below 1mV. The thesis details the analysis and design of basic RF building blocks: amplifiers, oscillators, switches and detectors. It also details how the circuits can be put together to make transceivers as well as describing various strategies to lower power consumption. In addition, novel techniques in both circuit and system design are presented which allow the power consumption of the radio to be reduced by as much as 97% whilst still retaining adequate performance. These techniques are based on duty cycling the transmitter and receiver and are possible because of the discontinuous nature of the On-Off Keying signal. In order to ease the sensitivity requirements of the baseband receive amplifier a design methodology for large output voltage receivers is presented. The designed receiver is measured to give a 5 mV output for an input power of -90 dBm and yet consumes less than 0.7 mW. There is also an appendix on the non linear modelling of the Glasgow University 50nm InP meta-morphic High Electron Mobility Transistor (50nm mHEMT) and one on the non linear modelling of a commercial Step Recovery diode (SRD). Models for the 50 nm mHEMT and the SRD are useful in the analysis, simulation and design of oscillators and pulse generators respectively

    Low-frequency noise in downscaled silicon transistors: Trends, theory and practice

    Get PDF
    By the continuing downscaling of sub-micron transistors in the range of few to one deca-nanometers, we focus on the increasing relative level of the low-frequency noise in these devices. Large amount of published data and models are reviewed and summarized, in order to capture the state-of-the-art, and to observe that the 1/area scaling of low-frequency noise holds even for carbon nanotube devices, but the noise becomes too large in order to have fully deterministic devices with area less than 10nm×10nm. The low-frequency noise models are discussed from the point of view that the noise can be both intrinsic and coupled to the charge transport in the devices, which provided a coherent picture, and more interestingly, showed that the models converge each to other, despite the many issues that one can find for the physical origin of each model. Several derivations are made to explain crossovers in noise spectra, variable random telegraph amplitudes, duality between energy and distance of charge traps, behaviors and trends for figures of merit by device downscaling, practical constraints for micropower amplifiers and dependence of phase noise on the harmonics in the oscillation signal, uncertainty and techniques of averaging by noise characterization. We have also shown how the unavoidable statistical variations by fabrication is embedded in the devices as a spatial “frozen noise”, which also follows 1/area scaling law and limits the production yield, from one side, and from other side, the “frozen noise” contributes generically to temporal 1/f noise by randomly probing the embedded variations during device operation, owing to the purely statistical accumulation of variance that follows from cause-consequence principle, and irrespectively of the actual physical process. The accumulation of variance is known as statistics of “innovation variance”, which explains the nearly log-normal distributions in the values for low-frequency noise parameters gathered from different devices, bias and other conditions, thus, the origin of geometric averaging in low-frequency noise characterizations. At present, the many models generally coincide each with other, and what makes the difference, are the values, which, however, scatter prominently in nanodevices. Perhaps, one should make some changes in the approach to the low-frequency noise in electronic devices, to emphasize the “statistics behind the numbers”, because the general physical assumptions in each model always fail at some point by the device downscaling, but irrespectively of that, the statistics works, since the low-frequency noise scales consistently with the 1/area law

    Circuit design and technological limitations of silicon RFICs for wireless applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 201-206).Semiconductor technologies have been a key to the growth in wireless communication over the past decade, bringing added convenience and accessibility through advantages in cost, size, and power dissipation. A better understanding of how an IC technology affects critical RF signal chain components will greatly aid the design of wireless systems and the development of process technologies for the increasingly complex applications that lie on the horizon. Many of the evolving applications will embody the concept of adaptive performance to extract the maximum capability from the RF link in terms of bandwidth, dynamic range, and power consumption-further engaging the interplay of circuits and devices is this design space and making it even more difficult to discern a clear guide upon which to base technology decisions. Rooted in these observations, this research focuses on two key themes: 1) devising methods of implementing RF circuits which allow the performance to be dynamically tuned to match real-time conditions in a power-efficient manner, and 2) refining approaches for thinking about the optimization of RF circuits at the device level. Working toward a 5.8 GHz receiver consistent with 1 GBit/s operation, signal path topologies and adjustable biasing circuits are developed for low-noise amplifiers (LNAs) and voltage-controlled oscillators (VCOs) to provide a facility by which power can be conserved when the demand for sensitivity is low. As an integral component in this effort, tools for exploring device level issues are illustrated with both circuit types, helping to identify physical limitations and design techniques through which they can be mitigated.(cont.) The design of two LNAs and four VCOs is described, each realized to provide a fully-integrated solution in a 0.5 tm SiGe BiCMOS process, and each incorporating all biasing and impedance matching on chip. Measured results for these 5-6GHz circuits allow a number of poignant technology issues to be enlightened, including an exhibition of the importance of terminal resistances and capacitances, a demonstration of where the transistor fT is relevant and where it is not, and the most direct comparison of bipolar and CMOS solutions offered to date in this frequency range. In addition to covering a number of new circuit techniques, this work concludes with some new views regarding IC technologies for RF applications.by Donald A. Hitko.Ph.D

    High-frequency oscillator design for integrated transceivers

    Get PDF

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    CMOS radio frequency circuits for short-range direct-conversion receivers

    Get PDF
    The research described in this thesis is focused on the design and implementation of radio frequency (RF) circuits for direct-conversion receivers. The main interest is in RF front-end circuits, which contain low-noise amplifiers, downconversion mixers, and quadrature local oscillator signal generation circuits. Three RF front-end circuits were fabricated in a short-channel CMOS process and experimental results are presented. A low-noise amplifier (LNA) is typically the first amplifying block in the receiver. A large number of LNAs have been reported in the literature. In this thesis, wideband LNA structures are of particular interest. The most common and relevant LNA topologies are analyzed in detail in the frequency domain and theoretical limitations are found. New LNA structures are presented and a comparison to the ones found in the literature is made. In this work, LNAs are implemented with downconversion mixers as RF front-ends. The designed mixers are based on the commonly used Gilbert cell. Different mixer implementation alternatives are presented and the design of the interface between the LNA and the downconversion mixer is discussed. In this work, the quadrature local oscillator signal is generated either by using frequency dividers or polyphase filters (PPF). Different possibilities for implementing frequency dividers are briefly described. Polyphase filters were already introduced by the 1970s and integrated circuit (IC) realizations to generate quadrature signals have been published since the mid-1990s. Although several publications where the performance of the PPFs has been studied either by theoretical calculations or simulations can be found in the literature, none of them covers all the relevant design parameters. In this thesis, the theory behind the PPFs is developed such that all the relevant design parameters needed in the practical circuit design have been calculated and presented with closed-form equations whenever possible. Although the main focus was on twoand three-stage PPFs, which are the most common ones encountered in practical ICs, the presented calculation methods can be extended to analyze the performance of multistage PPFs as well. The main application targets of the circuits presented in this thesis are the short-range wireless sensor system and ultrawideband (UWB). Sensors are capable of monitoring temperature, pressure, humidity, or acceleration, for example. The amount of transferred data is typically small and therefore a modest bit rate, less than 1 Mbps, is adequate. The sensor system applied in this thesis operates at 2.4-GHz ISM band (Industrial, Scientific, and Medical). Since the sensors must be able to operate independently for several years, extremely low power consumption is required. In sensor radios, the receiver current consumption is dominated by the blocks and elements operating at the RF. Therefore, the target was to develop circuits that can offer satisfactory performance with a current consumption level that is small compared to other receivers targeted for common cellular systems. On the other hand, there is a growing need for applications that can offer an extremely high data rate. UWB is one example of such a system. At the moment, it can offer data rates of up to 480 Mbps. There is a frequency spectrum allocated for UWB systems between 3.1 and 10.6 GHz. The UWB band is further divided into several narrower band groups (BG), each occupying a bandwidth of approximately 1.6 GHz. In this work, a direct-conversion RF front-end is designed for a dual-band UWB receiver, which operates in band groups BG1 and BG3, i.e. at 3.1 – 4.8 GHz and 6.3 – 7.9 GHz frequency areas, respectively. Clearly, an extremely wide bandwidth combined with a high operational frequency poses challenges for circuit design. The operational bandwidths and the interfaces between the circuit blocks need to be optimized to cover the wanted frequency areas. In addition, the wideband functionality should be achieved without using a number of on-chip inductors in order to minimize the die area, and yet the power consumption should be kept as small as possible. The characteristics of the two main target applications are quite different from each other with regard to power consumption, bandwidth, and operational frequency requirements. A common factor for both is their short, i.e. less than 10 meters, range. Although the circuits presented in this thesis are targeted on the two main applications mentioned above, they can be utilized in other kind of wireless communication systems as well. The performance of three experimental circuits was verified with measurements and the results are presented in this work. Two of them have been a part of a whole receiver including baseband amplifiers and filters and analog-to-digital converters. Experimental circuits were fabricated in a 0.13-µm CMOS process. In addition, this thesis includes design examples where new circuit ideas and implementation possibilities are introduced by using 0.13-µm and 65-nm CMOS processes. Furthermore, part of the theory presented in this thesis is validated with design examples in which actual IC component models are used.Tässä väitöskirjassa esitetty tutkimus keskittyy suoramuunnosvastaanottimen radiotaajuudella (radio frequency, RF) toimivien piirien suunnitteluun ja toteuttamiseen. Työ keskittyy vähäkohinaiseen vahvistimeen (low-noise amplifier, LNA), alassekoittajaan ja kvadratuurisen paikallisoskillaattorisignaalin tuottavaan piiriin. Työssä toteutettiin kolme RF-etupäätä erittäin kapean viivanleveyden CMOS-prosessilla, ja niiden kokeelliset tulokset esitetään. Vähäkohinainen vahvistin on yleensä ensimmäinen vahvistava lohko vastaanottimessa. Useita erilaisia vähäkohinaisia vahvistimia on esitetty kirjallisuudessa. Tämän työn kohteena ovat eritoten laajakaistaiset LNA-rakenteet. Tässä työssä analysoidaan taajuustasossa yleisimmät ja oleellisimmat LNA-topologiat. Lisäksi uusia LNA-rakenteita on esitetty tässä työssä ja niitä on verrattu muihin kirjallisuudessa esitettyihin piireihin. Tässä työssä LNA:t on toteutettu yhdessä alassekoittimen kanssa muodostaen RF-etupään. Työssä suunnitellut alassekoittimet perustuvat yleisesti käytettyyn Gilbertin soluun. Erilaisia sekoittajan suunnitteluvaihtoehtoja ja LNA:n ja alassekoittimen välisen rajapinnan toteutustapoja on esitetty. Tässä työssä kvadratuurinen paikallisoskillaattorisignaali on muodostettu joko käyttämällä taajuusjakajia tai monivaihesuodattimia. Erilaisia taajuusjakajia ja niiden toteutustapoja käsitellään yleisellä tasolla. Monivaihesuodatinta, joka on alunperin kehitetty jo 1970-luvulla, on käytetty integroiduissa piireissä kvadratuurisignaalin tuottamiseen 1990-luvun puolivälistä lähtien. Kirjallisuudesta löytyy lukuisia artikkeleita, joissa monivaihesuodattimen toimintaa on käsitelty teoreettisesti laskien ja simuloinnein. Kuitenkaan kaikkia sen suunnitteluparametreja ei tähän mennessä ole käsitelty. Tässä työssä monivaihesuodattimen teoriaa on kehitetty edelleen siten, että käytännön piirisuunnittelussa tarvittavat oleelliset parametrit on analysoitu ja suunnitteluyhtälöt on esitetty suljetussa muodossa aina kuin mahdollista. Vaikka työssä on keskitytty yleisimpiin eli kaksi- ja kolmiasteisiin monivaihesuodattimiin, on työssä esitetty menetelmät, joilla laskentaa voidaan jatkaa aina useampiasteisiin suodattimiin asti. Työssä esiteltyjen piirien pääkohteina ovat lyhyen kantaman sensoriradio ja erittäin laajakaistainen järjestelmä (ultrawideband, UWB). Sensoreilla voidaan tarkkailla esimerkiksi ympäristön lämpötilaa, kosteutta, painetta tai kiihtyvyyttä. Siirrettävän tiedon määrä on tyypillisesti vähäistä, jolloin pieni tiedonsiirtonopeus, alle 1 megabitti sekunnissa, on välttävä. Tämän työn kohteena oleva sensoriradiojärjestelmä toimii kapealla kaistalla 2,4 gigahertsin ISM-taajuusalueella (Industrial, Scientific, and Medical). Koska sensorien tavoitteena on toimia itsenäisesti ilman pariston vaihtoa useita vuosia, täytyy niiden kuluttaman virran olla erittäin vähäistä. Sensoriradiossa vastaanottimen tehonkulutuksen kannalta määräävässä asemassa ovat radiotaajuudella toimivat piirit. Tavoitteena oli tutkia ja kehittää piirirakenteita, joilla päästään tyydyttävään suorituskykyyn tehonkulutuksella, joka on vähäinen verrattuna muiden tavallisten langattomien tiedonsiirtojärjestelmien radiovastaanottimiin. Toisaalta viime aikoina on kasvanut tarvetta myös järjestelmille, jotka kykenevät tarjoamaan erittäin korkean tiedonsiirtonopeuden. UWB on esimerkki tällaisesta järjestelmästä. Tällä hetkellä se tarjoaa tiedonsiirtonopeuksia aina 480 megabittiin sekunnissa. UWB:lle on varattu taajuusalueita 3,1 ja 10,6 gigahertsin taajuuksien välillä. Kyseinen kaista on edelleen jaettu pienempiin taajuusryhmiin (band group, BG), joiden kaistanleveys on noin 1,6 gigahertsiä. Tässä työssä on toteutettu RF-etupää radiovastaanottimeen, joka pystyy toimimaan BG1:llä ja BG3:lla eli taajuusalueilla 3,1 - 4,7 GHz ja 6,3 - 7,9 GHz. Erittäin suuri kaistanleveys yhdistettynä korkeaan toimintataajuuteen tekee radiotaajuuspiirien suunnittelusta haasteellista. Piirirakenteiden toimintakaistat ja piirien väliset rajapinnat tulee optimoida riittävän laajoiksi käyttämättä kuitenkaan liian montaa piille integroitua kelaa piirin pinta-alan minimoimiseksi, ja lisäksi piirit tulisi toteuttaa mahdollisimman alhaisella tehonkulutuksella. Työssä esiteltyjen piirien kaksi pääkohdetta ovat hyvin erityyppisiä, mitä tulee tehonkulutus-, kaistanleveys- ja toimintataajuusvaatimuksiin. Yhteistä molemmille on lyhyt, alle 10 metrin kantama. Vaikka tässä työssä esitellyt piirit onkin kohdennettu kahteen pääsovelluskohteeseen, voidaan esitettyjä piirejä käyttää myös muiden tiedonsiirtojärjestelmien piirien suunnitteluun. Tässä työssä esitetään mittaustuloksineen yhteensä kolme kokeellista piiriä yllämainittuihin järjestelmiin. Kaksi ensimmäistä kokeellista piiriä muodostaa kokonaisen radiovastaanottimen yhdessä analogisten kantataajuusosien ja analogia-digitaali-muuntimien kanssa. Esitetyt kokeelliset piirit on toteutettu käyttäen 0,13 µm:n viivanleveyden CMOS-tekniikkaa. Näiden lisäksi työ pitää sisällään piirisuunnitteluesimerkkejä, joissa esitetään ideoita ja mahdollisuuksia käyttäen 0,13 µm:n ja 65 nm:n viivanleveyden omaavia CMOS-tekniikoita. Lisäksi piirisuunnitteluesimerkein havainnollistetaan työssä esitetyn teorian paikkansapitävyyttä käyttämällä oikeita komponenttimalleja.reviewe
    corecore