62 research outputs found

    Performance Analyses of Graph Heuristics and Selected Trajectory Metaheuristics on Examination Timetable Problem

    Get PDF
    Examination timetabling problem is hard to solve due to its NP-hard nature, with a large number of constraints having to be accommodated. To deal with the problem effectually, frequently heuristics are used for constructing feasible examination timetable while meta-heuristics are applied for improving the solution quality. This paper presents the performances of graph heuristics and major trajectory metaheuristics or S-metaheuristics for addressing both capacitated and un-capacitated examination timetabling problem. For constructing the feasible solution, six graph heuristics are used. They are largest degree (LD), largest weighted degree (LWD), largest enrolment degree (LE), and three hybrid heuristic with saturation degree (SD) such as SD-LD, SD-LE, and SD-LWD. Five trajectory algorithms comprising of tabu search (TS), simulated annealing (SA), late acceptance hill climbing (LAHC), great deluge algorithm (GDA), and variable neighborhood search (VNS) are employed for improving the solution quality. Experiments have been tested on several instances of un-capacitated and capacitated benchmark datasets, which are Toronto and ITC2007 dataset respectively. Experimental results indicate that, in terms of construction of solution of datasets, hybridizing of SD produces the best initial solutions. The study also reveals that, during improvement, GDA, SA, and LAHC can produce better quality solutions compared to TS and VNS for solving both benchmark examination timetabling datasets

    Scheduling Problems

    Get PDF
    Scheduling is defined as the process of assigning operations to resources over time to optimize a criterion. Problems with scheduling comprise both a set of resources and a set of a consumers. As such, managing scheduling problems involves managing the use of resources by several consumers. This book presents some new applications and trends related to task and data scheduling. In particular, chapters focus on data science, big data, high-performance computing, and Cloud computing environments. In addition, this book presents novel algorithms and literature reviews that will guide current and new researchers who work with load balancing, scheduling, and allocation problems

    Optimal Decision Trees for the Algorithm Selection Problem: Integer Programming Based Approaches

    Full text link
    Even though it is well known that for most relevant computational problems different algorithms may perform better on different classes of problem instances, most researchers still focus on determining a single best algorithmic configuration based on aggregate results such as the average. In this paper, we propose Integer Programming based approaches to build decision trees for the Algorithm Selection Problem. These techniques allow automate three crucial decisions: (i) discerning the most important problem features to determine problem classes; (ii) grouping the problems into classes and (iii) select the best algorithm configuration for each class. To evaluate this new approach, extensive computational experiments were executed using the linear programming algorithms implemented in the COIN-OR Branch & Cut solver across a comprehensive set of instances, including all MIPLIB benchmark instances. The results exceeded our expectations. While selecting the single best parameter setting across all instances decreased the total running time by 22%, our approach decreased the total running time by 40% on average across 10-fold cross validation experiments. These results indicate that our method generalizes quite well and does not overfit.Comment: International Transactions in Operational Research. 201

    Structure based partial solution search for the examination timetabling problem.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.The aim of this work is to present a new approach, namely, Structure Based Partial Solution Search (SBPSS) to solve the Examination Timetabling Problem. The success of the Developmental Approach in this problem domain suggested that the strategy of searching the spaces of partial timetables whilst constructing them is promising and worth pursuing. This work adopts a similar strategy. Multiple timetables are incrementally constructed at the same time. The quality of the partial timetables is improved upon by searching their partial solution spaces at every iteration during construction. Another key finding from the literature survey revealed that although timetables may exhibit the same behaviour in terms of their objective values, their structures or exam schedules may be different. The challenge with this finding is to decide on which regions to pursue because some regions may not be worth investigating due to the difficulty in searching them. These problematic areas may have solutions that are not amenable to change which makes it difficult to improve them. Another reason is that the neighbourhoods of solutions in these areas may be less connected than others which may restrict the ability of the search to move to a better solution in that neighbourhood. By moving to these problematic areas of the search space the search may stagnate and waste expensive computational resources. One way to overcome this challenge is to use both structure and behaviour in the search and not only behaviour alone to guide the search. A search that is guided by structure is able to find new regions by considering the structural components of the candidate solutions which indicate which part of the search space the same candidates occupy. Another benefit to making use of a structure-based search is that it has no objective value bias because it is not guided by only the objective value. This statement is consistent with the literature survey where it is suggested that in order to achieve good performance the search should not be guided by only the objective value. The proposed method has been tested on three popular benchmark sets for examination timetabling, namely, the Carter benchmark set; the benchmark set from the International Timetabling competition in 2007 and the Yeditepe benchmark set. The SBPSS found the best solutions for two of the Carter problem instances. The SBPSS found the best solutions for four of the competition problem instances. Lastly, the SBPSS improved on the best results for all the Yeditepe problem instances

    Evolutionary multi-objective optimization in scheduling problems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Diversification and Intensification in Hybrid Metaheuristics for Constraint Satisfaction Problems

    Get PDF
    Metaheuristics are used to find feasible solutions to hard Combinatorial Optimization Problems (COPs). Constraint Satisfaction Problems (CSPs) may be formulated as COPs, where the objective is to reduce the number of violated constraints to zero. The popular puzzle Sudoku is an NP-complete problem that has been used to study the effectiveness of metaheuristics in solving CSPs. Applying the Simulated Annealing (SA) metaheuristic to Sudoku has been shown to be a successful method to solve CSPs. However, the ‘easy-hard-easy’ phase-transition behavior frequently attributed to a certain class of CSPs makes finding a solution extremely difficult in the hard phase because of the vast search space, the small number of solutions and a fitness landscape marked by many plateaus and local minima. Two key mechanisms that metaheuristics employ for searching are diversification and intensification. Diversification is the method of identifying diverse promising regions of the search space and is achieved through the process of heating/reheating. Intensification is the method of finding a solution in one of these promising regions and is achieved through the process of cooling. The hard phase area of the search terrain makes traversal without becoming trapped very challenging. Running the best available method - a Constraint Propagation/Depth-First Search algorithm - against 30,000 benchmark problem-instances, 20,240 remain unsolved after ten runs at one minute per run which we classify as very hard. This dissertation studies the delicate balance between diversification and intensification in the search process and offers a hybrid SA algorithm to solve very hard instances. The algorithm presents (a) a heating/reheating strategy that incorporates the lowest solution cost for diversification; (b) a more complex two-stage cooling schedule for faster intensification; (c) Constraint Programming (CP) hybridization to reduce the search space and to escape a local minimum; (d) a three-way swap, secondary neighborhood operator for a low expense method of diversification. These techniques are tested individually and in hybrid combinations for a total of 11 strategies, and the effectiveness of each is evaluated by percentage solved and average best run-time to solution. In the final analysis, all strategies are an improvement on current methods, but the most remarkable results come from the application of the “Quick Reset” technique between cooling stages

    A generation perturbative hyper-heuristic for combinatorial optimization problems

    Get PDF
    Dissertation (MSc (Computer Science))--University of Pretoria, 2020.Perturbative heuristics or move operators are problem dependent operators commonly used by search techniques to solve computationally hard problems such as combinatorial optimization problems. These operators are generally derived manually by problem domain experts but this process is extremely challenging and time consuming. Hence, some initiatives aimed at automating the derivation process using search methodologies such as hyper-heuristics have been proposed in recent years. However, most of the proposed hyper-heuristic approaches generate new perturbative heuristics by recombining already existing and human-derived perturbative heuristics or components with various move acceptance criteria instead of generating the heuristics from scratch. As a result, these approaches cannot be easily applied to other problem domains where the human-derived heuristics are not available. In addition, the few hyper-heuristic approaches that have been proposed to generate perturbative heuristics from scratch are either designed for a single problem domain or applicable only to specific types of problems such as those that can be represented as graphs. The research presented in this dissertation addresses these issues by proposing a novel approach that can be used to automatically generate perturbative heuristics for any combinatorial optimization problem. In the proposed approach, perturbative heuristics are defined in terms of a set of basic operations (e.g. move and swap) and components of the solution (e.g. exam, period and room for the examination timetabling problem). Grammatical evolution, a well-known Evolutionary Algorithm, is used to combine the basic operations and components of the solution into perturbative heuristics. The generality of the proposed approach is tested by applying it to benchmark sets from three different problem domains, namely examination timetabling, vehicle routing and Boolean satisfiability. In addition, the performance of the perturbative heuristics generated by the proposed approach on the benchmark sets is compared to that of the commonly-used human-derived perturbative heuristics as well as the perturbative heuristics generated by other hyper-heuristic approaches in the literature. The experimental results show that the perturbative heuristics evolved by the proposed approach, specifically the grammatical evolution extended approach, outperformed the human-derived perturbative heuristics on all benchmark sets from the three problem domains. When compared to existing hyper-heuristic approaches, the proposed approach obtained solutions that were superior to those obtained by most hyper-heuristic approaches on the examination timetabling problem and only slightly inferior to those obtained by the best performing hyper-heuristic approaches on the vehicle routing and Boolean satisfiability problems. This performance of the proposed approach can be attributed to the fact that the generated perturbative heuristics were applied as is with no optimization as is commonly done with most hyper-heuristic approaches. Overall, the experimental results demonstrated success in developing an approach that can be used to automatically generate perturbative heuristics from scratch. Future work will consider incorporating optimization techniques during problem solving as well as performing a fitness landscape analysis in order to further improve the quality of solutions and have a better understanding of the proposed approach.SELF/ NRF MastersComputer ScienceMSc (Computer Science)Unrestricte

    Offline Learning for Sequence-based Selection Hyper-heuristics

    Get PDF
    This thesis is concerned with finding solutions to discrete NP-hard problems. Such problems occur in a wide range of real-world applications, such as bin packing, industrial flow shop problems, determining Boolean satisfiability, the traveling salesman and vehicle routing problems, course timetabling, personnel scheduling, and the optimisation of water distribution networks. They are typically represented as optimisation problems where the goal is to find a ``best'' solution from a given space of feasible solutions. As no known polynomial-time algorithmic solution exists for NP-hard problems, they are usually solved by applying heuristic methods. Selection hyper-heuristics are algorithms that organise and combine a number of individual low level heuristics into a higher level framework with the objective of improving optimisation performance. Many selection hyper-heuristics employ learning algorithms in order to enhance optimisation performance by improving the selection of single heuristics, and this learning may be classified as either online or offline. This thesis presents a novel statistical framework for the offline learning of subsequences of low level heuristics in order to improve the optimisation performance of sequenced-based selection hyper-heuristics. A selection hyper-heuristic is used to optimise the HyFlex set of discrete benchmark problems. The resulting sequences of low level heuristic selections and objective function values are used to generate an offline learning database of heuristic selections. The sequences in the database are broken down into subsequences and the mathematical concept of a logarithmic return is used to discriminate between ``effective'' subsequences, that tend to lead to improvements in optimisation performance, and ``disruptive'' subsequences that tend to lead to worsening performance. Effective subsequences are used to improve hyper-heuristics performance directly, by embedding them in a simple hyper-heuristic design, and indirectly as the inputs to an appropriate hyper-heuristic learning algorithm. Furthermore, by comparing effective subsequences across different problem domains it is possible to investigate the potential for cross-domain learning. The results presented here demonstrates that the use of well chosen subsequences of heuristics can lead to small, but statistically significant, improvements in optimisation performance

    Investigating evolutionary computation with smart mutation for three types of Economic Load Dispatch optimisation problem

    Get PDF
    The Economic Load Dispatch (ELD) problem is an optimisation task concerned with how electricity generating stations can meet their customers’ demands while minimising under/over-generation, and minimising the operational costs of running the generating units. In the conventional or Static Economic Load Dispatch (SELD), an optimal solution is sought in terms of how much power to produce from each of the individual generating units at the power station, while meeting (predicted) customers’ load demands. With the inclusion of a more realistic dynamic view of demand over time and associated constraints, the Dynamic Economic Load Dispatch (DELD) problem is an extension of the SELD, and aims at determining the optimal power generation schedule on a regular basis, revising the power system configuration (subject to constraints) at intervals during the day as demand patterns change. Both the SELD and DELD have been investigated in the recent literature with modern heuristic optimisation approaches providing excellent results in comparison with classical techniques. However, these problems are defined under the assumption of a regulated electricity market, where utilities tend to share their generating resources so as to minimise the total cost of supplying the demanded load. Currently, the electricity distribution scene is progressing towards a restructured, liberalised and competitive market. In this market the utility companies are privatised, and naturally compete with each other to increase their profits, while they also engage in bidding transactions with their customers. This formulation is referred to as: Bid-Based Dynamic Economic Load Dispatch (BBDELD). This thesis proposes a Smart Evolutionary Algorithm (SEA), which combines a standard evolutionary algorithm with a “smart mutation” approach. The so-called ‘smart’ mutation operator focuses mutation on genes contributing most to costs and penalty violations, while obeying operational constraints. We develop specialised versions of SEA for each of the SELD, DELD and BBDELD problems, and show that this approach is superior to previously published approaches in each case. The thesis also applies the approach to a new case study relevant to Nigerian electricity deregulation. Results on this case study indicate that our SEA is able to deal with larger scale energy optimisation tasks
    • 

    corecore