54 research outputs found

    Witness (Delaunay) Graphs

    Get PDF
    Proximity graphs are used in several areas in which a neighborliness relationship for input data sets is a useful tool in their analysis, and have also received substantial attention from the graph drawing community, as they are a natural way of implicitly representing graphs. However, as a tool for graph representation, proximity graphs have some limitations that may be overcome with suitable generalizations. We introduce a generalization, witness graphs, that encompasses both the goal of more power and flexibility for graph drawing issues and a wider spectrum for neighborhood analysis. We study in detail two concrete examples, both related to Delaunay graphs, and consider as well some problems on stabbing geometric objects and point set discrimination, that can be naturally described in terms of witness graphs.Comment: 27 pages. JCCGG 200

    Finding Hamiltonian cycles in Delaunay triangulations is NP-complete

    Get PDF
    AbstractIt is shown that it is an NP-complete problem to determine whether a Delaunay triangulation or an inscribable polyhedron has a Hamiltonian cycle. It is also shown that there exist nondegenerate Delaunay triangulations and simplicial, inscribable polyhedra without 2-factors

    Higher-Order Triangular-Distance Delaunay Graphs: Graph-Theoretical Properties

    Full text link
    We consider an extension of the triangular-distance Delaunay graphs (TD-Delaunay) on a set PP of points in the plane. In TD-Delaunay, the convex distance is defined by a fixed-oriented equilateral triangle \triangledown, and there is an edge between two points in PP if and only if there is an empty homothet of \triangledown having the two points on its boundary. We consider higher-order triangular-distance Delaunay graphs, namely kk-TD, which contains an edge between two points if the interior of the homothet of \triangledown having the two points on its boundary contains at most kk points of PP. We consider the connectivity, Hamiltonicity and perfect-matching admissibility of kk-TD. Finally we consider the problem of blocking the edges of kk-TD.Comment: 20 page

    Generalized Delaunay triangulations : graph-theoretic properties and algorithms

    Get PDF
    This thesis studies different generalizations of Delaunay triangulations, both from a combinatorial and algorithmic point of view. The Delaunay triangulation of a point set S, denoted DT(S), has vertex set S. An edge uv is in DT(S) if it satisfies the empty circle property: there exists a circle with u and v on its boundary that does not enclose points of S. Due to different optimization criteria, many generalizations of the DT(S) have been proposed. Several properties are known for DT(S), yet, few are known for its generalizations. The main question we explore is: to what extent can properties of DT(S) be extended for generalized Delaunay graphs? First, we explore the connectivity of the flip graph of higher order Delaunay triangulations of a point set S in the plane. The order-k flip graph might be disconnected for k = 3, yet, we give upper and lower bounds on the flip distance from one order-k triangulation to another in certain settings. Later, we show that there exists a length-decreasing sequence of plane spanning trees of S that converges to the minimum spanning tree of S with respect to an arbitrary convex distance function. Each pair of consecutive trees in the sequence is contained in a constrained convex shape Delaunay graph. In addition, we give a linear upper bound and specific bounds when the convex shape is a square. With focus still on convex distance functions, we study Hamiltonicity in k-order convex shape Delaunay graphs. Depending on the convex shape, we provide several upper bounds for the minimum k for which the k-order convex shape Delaunay graph is always Hamiltonian. In addition, we provide lower bounds when the convex shape is in a set of certain regular polygons. Finally, we revisit an affine invariant triangulation, which is a special type of convex shape Delaunay triangulation. We show that many properties of the standard Delaunay triangulations carry over to these triangulations. Also, motivated by this affine invariant triangulation, we study different triangulation methods for producing other affine invariant geometric objects.Esta tesis estudia diferentes generalizaciones de la triangulación de Delaunay, tanto desde un punto de vista combinatorio como algorítmico. La triangulación de Delaunay de un conjunto de puntos S, denotada DT(S), tiene como conjunto de vértices a S. Una arista uv está en DT(S) si satisface la propiedad del círculo vacío: existe un círculo con u y v en su frontera que no contiene ningún punto de S en su interior. Debido a distintos criterios de optimización, se han propuesto varias generalizaciones de la DT (S). Hoy en día, se conocen bastantes propiedades de la DT(S), sin embargo, poco se sabe sobre sus generalizaciones. La pregunta principal que exploramos es: ¿Hasta qué punto las propiedades de la DT(S) se pueden extender para generalizaciones de gráficas de Delaunay? Primero, exploramos la conectividad de la gráfica de flips de las triangulaciones de Delaunay de orden alto de un conjunto de puntos S en el plano. La gráfica de flips de triangulaciones de orden k = 3 podría ser disconexa, sin embargo, nosotros damos una cota superior e inferior para la distancia en flips de una triangulación de orden k a alguna otra cuando S cumple con ciertas características. Luego, probamos que existe una secuencia de árboles generadores sin cruces tal que la suma total de la longitud de las aristas con respecto a una distancia convexa arbitraria es decreciente y converge al árbol generador mínimo con respecto a la distancia correspondiente. Cada par de árboles consecutivos en la secuencia se encuentran en una triangulación de Delaunay con restricciones. Adicionalmente, damos una cota superior lineal para la longitud de la secuencia y cotas específicas cuando el conjunto convexo es un cuadrado. Aún concentrados en distancias convexas, estudiamos hamiltonicidad en las gráficas de Delaunay de distancia convexa de k-orden. Dependiendo en la distancia convexa, exhibimos diversas cotas superiores para el mínimo valor de k que satisface que la gráfica de Delaunay de distancia convexa de orden-k es hamiltoniana. También damos cotas inferiores para k cuando el conjunto convexo pertenece a un conjunto de ciertos polígonos regulares. Finalmente, re-visitamos una triangulación afín invariante, la cual es un caso especial de triangulación de Delaunay de distancia convexa. Probamos que muchas propiedades de la triangulación de Delaunay estándar se preservan en estas triangulaciones. Además, motivados por esta triangulación afín invariante, estudiamos diferentes algoritmos que producen otros objetos geométricos afín invariantes

    Maximum and minimum toughness of graphs of small genus

    Get PDF
    AbstractA new lower bound on the toughness t(G) of a graph G in terms of its connectivity ϰ(G) and genus γ(G) is obtained. For γ > 0, the bound is sharp via an infinite class of extremal graphs all of girth 4. For planar graphs, the bound is t(G) > ϰ(G)/2 − 1. For ϰ = 1 this bound is not sharp, but for each ϰ = 3, 4, 5 and any ϵ > 0, infinite families of graphs {G(ϰ, ϵ)} are provided with ϰ(G(ϰ, ϵ)) = ϰ, but t(G(ϰ, ϵ)) < ϰ/2 − 1 + ϵ.Analogous investigations on the torus are carried out, and finally the question of upper bounds is discussed. Several unanswered questions are posed

    Fully discrete approximation of rate-independent damage models with gradient regularization

    Get PDF
    This work provides a convergence analysis of a time-discrete scheme coupled with a finite-element approximation in space for a model for partial, rate-independent damage featuring a gradient regularization as well as a non-smooth constraint to account for the unidirectionality of the damage evolution. The numerical algorithm to solve the coupled problem of quasistatic small strain linear elasticity with rate-independent gradient damage is based on a Variable ADMM-method to approximate the nonsmooth contribution. Space-discretization is based on P1 finite elements and the algorithm directly couples the time-step size with the spatial grid size h. For a wide class of gradient regularizations, which allows both for Sobolev functions of integrability exponent r ∈ (1, ∞) and for BV-functions, it is shown that solutions obtained with the algorithm approximate as h → 0 a semistable energetic solution of the original problem. The latter is characterized by a minimality property for the displacements, a semistability inequality for the damage variable and an energy dissipation estimate. Numerical benchmark experiments confirm the stability of the method

    Fully discrete approximation of rate-independent damage models with gradient regularization

    Get PDF
    This work provides a convergence analysis of a time-discrete scheme coupled with a finite-element approximation in space for a model for partial, rate-independent damage featuring a gradient regularization as well as a non-smooth constraint to account for the unidirectionality of the damage evolution. The numerical algorithm to solve the coupled problem of quasistatic small strain linear elasticity with rate-independent gradient damage is based on a Variable ADMM-method to approximate the nonsmooth contribution. Space-discretization is based on P1 finite elements and the algorithm directly couples the time-step size with the spatial grid size h. For a wide class of gradient regularizations, which allows both for Sobolev functions of integrability exponent r ∈ (1, ∞) and for BV-functions, it is shown that solutions obtained with the algorithm approximate as h → 0 a semistable energetic solution of the original problem. The latter is characterized by a minimality property for the displacements, a semistability inequality for the damage variable and an energy dissipation estimate. Numerical benchmark experiments confirm the stability of the method

    Discrete Geometry (hybrid meeting)

    Get PDF
    A number of important recent developments in various branches of discrete geometry were presented at the workshop, which took place in hybrid format due to a pandemic situation. The presentations illustrated both the diversity of the area and its strong connections to other fields of mathematics such as topology, combinatorics, algebraic geometry or functional analysis. The open questions abound and many of the results presented were obtained by young researchers, confirming the great vitality of discrete geometry
    corecore