13 research outputs found

    Handbook of Vascular Biometrics

    Get PDF

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    Fingerprint recognition based on shark smell optimization and genetic algorithm

    Get PDF
    Fingerprint recognition is a dominant form of biometric due to its distinctiveness. The study aims to extract and select the best features of fingerprint images, and evaluate the strength of the Shark Smell Optimization (SSO) and Genetic Algorithm (GA) in the search space with a chosen set of metrics. The proposed model consists of seven phases namely, enrollment, image preprocessing by using weighted median filter, feature extraction by using SSO, weight generation by using Chebyshev polynomial first kind (CPFK), feature selection by using GA, creation of a user’s database, and matching features by using Euclidean distance (ED). The effectiveness of the proposed model’s algorithms and performance is evaluated on 150 real fingerprint images that were collected from university students by the ZKTeco scanner at Sulaimani city, Iraq. The system’s performance was measured by three renowned error rate metrics, namely, False Acceptance Rate (FAR), False Rejection Rate (FRR), and Correct Verification Rate (CVR). The experimental outcome showed that the proposed fingerprint recognition model was exceedingly accurate recognition because of a low rate of both FAR and FRR, with a high CVR percentage gained which was 0.00, 0.00666, and 99.334%, respectively. This finding would be useful for improving biometric secure authentication based fingerprint. It is also possibly applied to other research topics such as fraud detection, e-payment, and other real-life applications authentication

    Fusion of face and iris biometrics in security verification systems.

    Get PDF
    Master of Science in Computer Science. University of KwaZulu-Natal, Durban, 2016.Abstract available in PDF file

    Multimodal Biometric Systems for Personal Identification and Authentication using Machine and Deep Learning Classifiers

    Get PDF
    Multimodal biometrics, using machine and deep learning, has recently gained interest over single biometric modalities. This interest stems from the fact that this technique improves recognition and, thus, provides more security. In fact, by combining the abilities of single biometrics, the fusion of two or more biometric modalities creates a robust recognition system that is resistant to the flaws of individual modalities. However, the excellent recognition of multimodal systems depends on multiple factors, such as the fusion scheme, fusion technique, feature extraction techniques, and classification method. In machine learning, existing works generally use different algorithms for feature extraction of modalities, which makes the system more complex. On the other hand, deep learning, with its ability to extract features automatically, has made recognition more efficient and accurate. Studies deploying deep learning algorithms in multimodal biometric systems tried to find a good compromise between the false acceptance and the false rejection rates (FAR and FRR) to choose the threshold in the matching step. This manual choice is not optimal and depends on the expertise of the solution designer, hence the need to automatize this step. From this perspective, the second part of this thesis details an end-to-end CNN algorithm with an automatic matching mechanism. This thesis has conducted two studies on face and iris multimodal biometric recognition. The first study proposes a new feature extraction technique for biometric systems based on machine learning. The iris and facial features extraction is performed using the Discrete Wavelet Transform (DWT) combined with the Singular Value Decomposition (SVD). Merging the relevant characteristics of the two modalities is used to create a pattern for an individual in the dataset. The experimental results show the robustness of our proposed technique and the efficiency when using the same feature extraction technique for both modalities. The proposed method outperformed the state-of-the-art and gave an accuracy of 98.90%. The second study proposes a deep learning approach using DensNet121 and FaceNet for iris and faces multimodal recognition using feature-level fusion and a new automatic matching technique. The proposed automatic matching approach does not use the threshold to ensure a better compromise between performance and FAR and FRR errors. However, it uses a trained multilayer perceptron (MLP) model that allows people’s automatic classification into two classes: recognized and unrecognized. This platform ensures an accurate and fully automatic process of multimodal recognition. The results obtained by the DenseNet121-FaceNet model by adopting feature-level fusion and automatic matching are very satisfactory. The proposed deep learning models give 99.78% of accuracy, and 99.56% of precision, with 0.22% of FRR and without FAR errors. The proposed and developed platform solutions in this thesis were tested and vali- dated in two different case studies, the central pharmacy of Al-Asria Eye Clinic in Dubai and the Abu Dhabi Police General Headquarters (Police GHQ). The solution allows fast identification of the persons authorized to access the different rooms. It thus protects the pharmacy against any medication abuse and the red zone in the military zone against the unauthorized use of weapons

    A Survey on Audio-Video based Defect Detection through Deep Learning in Railway Maintenance

    Get PDF
    Within Artificial Intelligence, Deep Learning (DL) represents a paradigm that has been showing unprecedented performance in image and audio processing by supporting or even replacing humans in defect and anomaly detection. The Railway sector is expected to benefit from DL applications, especially in predictive maintenance applications, where smart audio and video sensors can be leveraged yet kept distinct from safety-critical functions. Such separation is crucial, as it allows for improving system dependability with no impact on its safety certification. This is further supported by the development of DL in other transportation domains, such as automotive and avionics, opening for knowledge transfer opportunities and highlighting the potential of such a paradigm in railways. In order to summarize the recent state-of-the-art while inquiring about future opportunities, this paper reviews DL approaches for the analysis of data generated by acoustic and visual sensors in railway maintenance applications that have been published until August 31st, 2021. In this paper, the current state of the research is investigated and evaluated using a structured and systematic method, in order to highlight promising approaches and successful applications, as well as to identify available datasets, current limitations, open issues, challenges, and recommendations about future research directions

    Ridge orientation modeling and feature analysis for fingerprint identification

    Get PDF
    This thesis systematically derives an innovative approach, called FOMFE, for fingerprint ridge orientation modeling based on 2D Fourier expansions, and explores possible applications of FOMFE to various aspects of a fingerprint identification system. Compared with existing proposals, FOMFE does not require prior knowledge of the landmark singular points (SP) at any stage of the modeling process. This salient feature makes it immune from false SP detections and robust in terms of modeling ridge topology patterns from different typological classes. The thesis provides the motivation of this work, thoroughly reviews the relevant literature, and carefully lays out the theoretical basis of the proposed modeling approach. This is followed by a detailed exposition of how FOMFE can benefit fingerprint feature analysis including ridge orientation estimation, singularity analysis, global feature characterization for a wide variety of fingerprint categories, and partial fingerprint identification. The proposed methods are based on the insightful use of theory from areas such as Fourier analysis of nonlinear dynamic systems, analytical operators from differential calculus in vector fields, and fluid dynamics. The thesis has conducted extensive experimental evaluation of the proposed methods on benchmark data sets, and drawn conclusions about strengths and limitations of these new techniques in comparison with state-of-the-art approaches. FOMFE and the resulting model-based methods can significantly improve the computational efficiency and reliability of fingerprint identification systems, which is important for indexing and matching fingerprints at a large scale

    Motion-capture-based hand gesture recognition for computing and control

    Get PDF
    This dissertation focuses on the study and development of algorithms that enable the analysis and recognition of hand gestures in a motion capture environment. Central to this work is the study of unlabeled point sets in a more abstract sense. Evaluations of proposed methods focus on examining their generalization to users not encountered during system training. In an initial exploratory study, we compare various classification algorithms based upon multiple interpretations and feature transformations of point sets, including those based upon aggregate features (e.g. mean) and a pseudo-rasterization of the capture space. We find aggregate feature classifiers to be balanced across multiple users but relatively limited in maximum achievable accuracy. Certain classifiers based upon the pseudo-rasterization performed best among tested classification algorithms. We follow this study with targeted examinations of certain subproblems. For the first subproblem, we introduce the a fortiori expectation-maximization (AFEM) algorithm for computing the parameters of a distribution from which unlabeled, correlated point sets are presumed to be generated. Each unlabeled point is assumed to correspond to a target with independent probability of appearance but correlated positions. We propose replacing the expectation phase of the algorithm with a Kalman filter modified within a Bayesian framework to account for the unknown point labels which manifest as uncertain measurement matrices. We also propose a mechanism to reorder the measurements in order to improve parameter estimates. In addition, we use a state-of-the-art Markov chain Monte Carlo sampler to efficiently sample measurement matrices. In the process, we indirectly propose a constrained k-means clustering algorithm. Simulations verify the utility of AFEM against a traditional expectation-maximization algorithm in a variety of scenarios. In the second subproblem, we consider the application of positive definite kernels and the earth mover\u27s distance (END) to our work. Positive definite kernels are an important tool in machine learning that enable efficient solutions to otherwise difficult or intractable problems by implicitly linearizing the problem geometry. We develop a set-theoretic interpretation of ENID and propose earth mover\u27s intersection (EMI). a positive definite analog to ENID. We offer proof of EMD\u27s negative definiteness and provide necessary and sufficient conditions for ENID to be conditionally negative definite, including approximations that guarantee negative definiteness. In particular, we show that ENID is related to various min-like kernels. We also present a positive definite preserving transformation that can be applied to any kernel and can be used to derive positive definite EMD-based kernels, and we show that the Jaccard index is simply the result of this transformation applied to set intersection. Finally, we evaluate kernels based on EMI and the proposed transformation versus ENID in various computer vision tasks and show that END is generally inferior even with indefinite kernel techniques. Finally, we apply deep learning to our problem. We propose neural network architectures for hand posture and gesture recognition from unlabeled marker sets in a coordinate system local to the hand. As a means of ensuring data integrity, we also propose an extended Kalman filter for tracking the rigid pattern of markers on which the local coordinate system is based. We consider fixed- and variable-size architectures including convolutional and recurrent neural networks that accept unlabeled marker input. We also consider a data-driven approach to labeling markers with a neural network and a collection of Kalman filters. Experimental evaluations with posture and gesture datasets show promising results for the proposed architectures with unlabeled markers, which outperform the alternative data-driven labeling method

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews
    corecore