1,525 research outputs found

    On Cloud-based multisource Reliable Multicast Transport in Broadband Multimedia Satellite Networks

    Get PDF
    Multimedia synchronization, Software Over the Air, Personal Information Management on Cloud networks require new reliable protocols, which reduce the traffic load in the core and edge network. This work shows via simulations the performance of an efficient multicast file delivery, which advantage of the distributed file storage in Cloud computing. The performance evaluation focuses on the case of a personal satellite equipment with error prone channels

    Service Chaining Placement Based on Satellite Mission Planning in Ground Station Networks

    Get PDF
    As the increase in satellite number and variety, satellite ground stations should be required to offer user services in a flexible and efficient manner. Network function virtualization (NFV) can provide a new paradigm to allocate network resources on-demand for user services over the underlying network. However, most of the existing work focuses on the virtual network function (VNF) placement and routing traffic problem for enterprise data center networks, the issue needs to further study in satellite communication scenarios. In this paper, we investigate the VNF placement and routing traffic problem in satellite ground station networks. We formulate the problem of resource allocation as an integer linear programming (ILP) model and the objective is to minimize the link resource utilization and the number of servers used. Considering the information about satellite orbit fixation and mission planning, we propose location-aware resource allocation (LARA) algorithms based on Greedy and IBM CPLEX 12.10, respectively. The proposed LARA algorithm can assist in deploying VNFs and routing traffic flows by predicting the running conditions of user services. We evaluate the performance of our proposed LARA algorithm in three networks of Fat-Tree, BCube, and VL2. Simulation results show that our proposed LARA algorithm performs better than that without prediction, and can effectively decrease the average resource utilization of satellite ground station networks

    PROPOSED MIDDLEWARE SOLUTION FOR RESOURCE-CONSTRAINED DISTRIBUTED EMBEDDED NETWORKS

    Get PDF
    The explosion in processing power of embedded systems has enabled distributed embedded networks to perform more complicated tasks. Middleware are sets of encapsulations of common and network/operating system-specific functionality into generic, reusable frameworks to manage such distributed networks. This thesis will survey and categorize popular middleware implementations into three adapted layers: host-infrastructure, distribution, and common services. This thesis will then apply a quantitative approach to grading and proposing a single middleware solution from all layers for two target platforms: CubeSats and autonomous unmanned aerial vehicles (UAVs). CubeSats are 10x10x10cm nanosatellites that are popular university-level space missions, and impose power and volume constraints. Autonomous UAVs are similarly-popular hobbyist-level vehicles that exhibit similar power and volume constraints. The MAVLink middleware from the host-infrastructure layer is proposed as the middleware to manage the distributed embedded networks powering these platforms in future projects. Finally, this thesis presents a performance analysis on MAVLink managing the ARM Cortex-M 32-bit processors that power the target platforms

    Space-as-a-Service: A Framework and Taxonomy of -as-a-Service Concepts for Space

    Get PDF
    The servitization of space is introducing profound change, challenging established companies with new business models, and significantly lowering the entry barrier to space. New types of services such as Mission-as-a-Service, Satellite-as-a-Service, Constellation-as-a-Service, etc., are introduced. However, what these notions mean is not clear and in practice, they are often used with contradicting meanings. This paper aims to provide an initial survey of various new service concepts in the space domain and develops a taxonomy and framework for classifying these emerging services with their underlying systems. A particular emphasis is put on distinguishing novel, "New Space" services from traditional space services. We find that these new space services differ, compared to traditional space services in at least three aspects: New space services have their origin in a transition from a product-to a use-oriented business model and make reference to Cloud computing and its underlying techniques such as virtualization. We conclude that analogous to the terrestrial impact of Cloud computing on the emergence of numerous e-commerce start-ups, we might see a similar surge of in-space applications, building on a new space service backbone. Such a development is likely going to be enabled by the shift from traditionally high capital expenditures of developing space applications to operating expenses, thereby lowering the entry barrier

    Role of satellite communications in 5G ecosystem: perspectives and challenges

    Get PDF
    The next generation of mobile radio communication systems – so-called 5G – will provide some major changes to those generations to date. The ability to cope with huge increases in data traffic at reduced latencies and improved quality of user experience together with a major reduction in energy usage are big challenges. In addition, future systems will need to embody connections to billions of objects – the so-called Internet of Things (IoT) which raises new challenges.Visions of 5G are now available from regions across the world and research is ongoing towards new standards. The consensus is a flatter architecture that adds a dense network of small cells operating in the millimetre wave bands and which are adaptable and software controlled. But what is the place for satellites in such a vision? The chapter examines several potential roles for satellites in 5G including coverage extension, IoT, providing resilience, content caching and multi-cast, and the integrated architecture. Furthermore, the recent advances in satellite communications together with the challenges associated with the use of satellite in the integrated satellite-terrestrial architecture are also discussed

    Ground station as a service reference architectures and cyber security attack tree analysis

    Get PDF
    As the Ground Station as a Service (GSaaS) paradigm transforms space infrastructure operations, new attack surface emerges for malicious actors. While the space community generally refers to GSaaS as a singular model, there are several flavors of these systems. After a description of the general GSaaS network's basic structure, this paper presents an analysis of four reference architectures of GSaaS. On the basis of this systems engineering analysis, a cybersecurity analysis of the critical nodes will be carried out through the attack tree method. Later the cybersecurity implication both of technical and strategic characteristic of GSaaS networks will be discussed and put in relation with the current state of space cyberwarfare landscape

    A prototype to integrate a wireless sensor network with civil protection grid applications

    Get PDF
    The present work was performed in the context of the CYCLOPS project, which aimed to exploit the Grid capabilities for Global Monitoring for Environment and Security (GMES) applications. The scenario exploited in the present work was the existence of remote wireless sensor networks, which could monitor and transmit real-time data from remote places, in order to prevent or react more accurately to situations of natural disasters. Considering a Wireless Sensor Network (WSN) as an instrument, we used the DORII middleware to integrate this instrument with gLite-based Grid computing and storage, allowing an effective and user friendly access to the instrument, as it is required by Civil Protection applications. The mentioned goal was achieved by (i) implementing an Instrument Element and several Instrument Managers, which virtualize the WSN; (ii) developing a Custom Java Interface to connect the Instrument Managers with sensors, performing the translation of the commands/data exchanged between them; (iii) implementing additional modules to permit a long duration (or offline) monitoring, saving the observed data in a database; (iv) implementing a Sensor Observation Service, following the OGC standards, providing the users with access to the database
    • …
    corecore