21 research outputs found

    A shape descriptor based on trainable COSFIRE filters for the recognition of handwritten digits

    Get PDF
    The recognition of handwritten digits is an application which has been used as a benchmark for comparing shape recognition methods. We train COSFIRE filters to be selective for different parts of handwritten digits. In analogy with the neurophysiological concept of population coding we use the responses of multiple COSFIRE filters as a shape descriptor of a handwritten digit. We demonstrate the effectiveness of the proposed approach on two data sets of handwritten digits: Western Arabic (MNIST) and Farsi for which we achieve high recognition rates of 99.52% and 99.33%, respectively. COSFIRE filters are conceptually simple, easy to implement and they are versatile trainable feature detectors. The shape descriptor that we propose is highly effective to the automatic recognition of handwritten digits.peer-reviewe

    Ventral-stream-like shape representation : from pixel intensity values to trainable object-selective COSFIRE models

    Get PDF
    Keywords: hierarchical representation, object recognition, shape, ventral stream, vision and scene understanding, robotics, handwriting analysisThe remarkable abilities of the primate visual system have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses) and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 → V4 → TEO). Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. An S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable) objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms.peer-reviewe

    Inhibition-augmented trainable COSFIRE filters for keypoint detection and object recognition

    Get PDF
    The shape and meaning of an object can radically change with the addition of one or more contour parts. For instance, a T-junction can become a crossover. We extend the COSFIRE trainable filter approach which uses a positive prototype pattern for configuration by adding a set of negative prototype patterns. The configured filter responds to patterns that are similar to the positive prototype but not to any of the negative prototypes. The configuration of such a filter comprises selecting given channels of a bank of Gabor filters that provide excitatory or inhibitory input and determining certain blur and shift parameters. We compute the response of such a filter as the excitatory input minus a fraction of the maximum of inhibitory inputs. We use three applications to demonstrate the effectiveness of inhibition: the exclusive detection of vascular bifurcations (i.e., without crossovers) in retinal fundus images (DRIVE data set), the recognition of architectural and electrical symbols (GREC’11 data set) and the recognition of handwritten digits (MNIST data set)

    Brain-Inspired Computing

    Full text link

    Recognition of architectural and electrical symbols by COSFIRE filters with inhibition

    Get PDF
    The automatic recognition of symbols can be used to automatically convert scanned drawings into digital representations compatible with computer aided design software. We propose a novel approach to automatically recognize architectural and electrical symbols. The proposed method extends the existing trainable COSFIRE approach by adding an inhibition mechanism that is inspired by shape-selective TEO neurons in visual cortex. A COSFIRE filter with inhibition takes as input excitatory and inhibitory responses from line and edge detectors. The type (excitatory or inhibitory) and the spatial arrangement of low level features are determined in an automatic configuration step that analyzes two types of prototype pattern called positive and negative. Excitatory features are extracted from a positive pattern and inhibitory features are extracted from one or more negative patterns. In our experiments we use four subsets of images with different noise levels from the Graphics Recognition data set (GREC 2011) and demonstrate that the inhibition mechanism that we introduce improves the effectiveness of recognition substantially
    corecore