303 research outputs found

    Analysis and enhancement of the denoising depth data using kinect through iterative technique

    Get PDF
    Since the release of Kinect by Microsoft, the, accuracy and stability of Kinect data-such as depth map, has been essential and important element of research and data analysis. In order to develop efficient means of analyzing and using the kinnect data, researchers require high quality of depth data during the preprocessing step, which is very crucial for accurate results. One of the most important concerns of researchers is to eliminate image noise and convert image and video to the best quality. In this paper, different types of the noise for Kinect are analyzed and a unique technique is used, to reduce the background noise based on distance between Kinect devise and the user. Whereas, for shadow removal, the iterative method is used to eliminate the shadow casted by the Kinect. A 3D depth image is obtained as a result with good quality and accuracy. Further, the results of this present study reveal that the image background is eliminated completely and the 3D image quality in depth map has been enhanced

    Robust Digital-Twin Localization via An RGBD-based Transformer Network and A Comprehensive Evaluation on a Mobile Dataset

    Full text link
    The potential of digital-twin technology, involving the creation of precise digital replicas of physical objects, to reshape AR experiences in 3D object tracking and localization scenarios is significant. However, enabling robust 3D object tracking in dynamic mobile AR environments remains a formidable challenge. These scenarios often require a more robust pose estimator capable of handling the inherent sensor-level measurement noise. In this paper, recognizing the challenges of comprehensive solutions in existing literature, we propose a transformer-based 6DoF pose estimator designed to achieve state-of-the-art accuracy under real-world noisy data. To systematically validate the new solution's performance against the prior art, we also introduce a novel RGBD dataset called Digital Twin Tracking Dataset v2 (DTTD2), which is focused on digital-twin object tracking scenarios. Expanded from an existing DTTD v1 (DTTD1), the new dataset adds digital-twin data captured using a cutting-edge mobile RGBD sensor suite on Apple iPhone 14 Pro, expanding the applicability of our approach to iPhone sensor data. Through extensive experimentation and in-depth analysis, we illustrate the effectiveness of our methods under significant depth data errors, surpassing the performance of existing baselines. Code and dataset are made publicly available at: https://github.com/augcog/DTTD

    Fusing Depth and Silhouette for Scanning Transparent Object with RGB-D Sensor

    Get PDF
    3D reconstruction based on structured light or laser scan has been widely used in industrial measurement, robot navigation, and virtual reality. However, most modern range sensors fail to scan transparent objects and some other special materials, of which the surface cannot reflect back the accurate depth because of the absorption and refraction of light. In this paper, we fuse the depth and silhouette information from an RGB-D sensor (Kinect v1) to recover the lost surface of transparent objects. Our system is divided into two parts. First, we utilize the zero and wrong depth led by transparent materials from multiple views to search for the 3D region which contains the transparent object. Then, based on shape from silhouette technology, we recover the 3D model by visual hull within these noisy regions. Joint Grabcut segmentation is operated on multiple color images to extract the silhouette. The initial constraint for Grabcut is automatically determined. Experiments validate that our approach can improve the 3D model of transparent object in real-world scene. Our system is time-saving, robust, and without any interactive operation throughout the process

    Improving Statistical Machine Translation Through N-best List

    Get PDF
    Statistical machine translation (SMT) is a method of translating from one natural language (NL) to another using statistical models generated from examples of the NLs. The quality of translation generated by SMT systems is competitive with other premiere machine translation (MT) systems and more improvements can be made. This thesis focuses on improving the quality of translation by re-ranking the n-best lists that are generated by modern phrase-based SMT systems. The n-best lists represent the n most likely translations of a sentence. The research establishes upper and lower limits of the translation quality achievable through re-ranking. Three methods of generating an n-gram language model (LM) from the n-best lists are proposed. Applying the LMs to re-ranking the n-best lists results in improvements of up to six percent in the Bi-Lingual Evaluation Understudy (BLEU) score of the translation

    A Quantification of the 3D Modeling Capabilities of the Kinect Fustion Algorithm

    Get PDF
    In the eld of three-dimensional modeling, we continually struggle to quantify how closely the resulting model matches the physical object being represented. When precision measurements are required, they are often left to high-end, industrial systems. The aim of this thesis is to quantify the level of precision that can be obtained from commodity systems such as the Microsoft Kinect paired with the KinectFusion algorithm. Although the Kinect alone is considered a noisy sensor, the KinectFusion algorithm has shown the ability to build detailed surface models through the aggregation of depth information taken from multiple perspectives. This work represents the first rigorous validation of the three- dimensional modeling capabilities of the KinectFusion algorithm. One experiment is performed to measure the effects of key algorithm parameters such as resolution and range, while another is performed to measure the lower bounds at which objects can be detected and accurately modeled. The first experiment found that the KinectFusion algorithm reduced the uncertainty of the Kinect sensor alone from 10 mm to just 1.8 mm. Furthermore, the results of the second experiment demonstrate that the KinectFusion algorithm can detect surface deviations as little as 1.3 mm, but cannot accurately measure the deviation. Such results form an initial quantification of the KinectFusion algorithm, thus providing confidence about when and when not to utilize the KinectFusion algorithm for precision modeling. The hope is that this work will open the door for the algorithm to be used in real-world applications, such as alleviating the tedious visual surface inspections required for USAF aircraft

    Introspective Perception for Mobile Robots

    Full text link
    Perception algorithms that provide estimates of their uncertainty are crucial to the development of autonomous robots that can operate in challenging and uncontrolled environments. Such perception algorithms provide the means for having risk-aware robots that reason about the probability of successfully completing a task when planning. There exist perception algorithms that come with models of their uncertainty; however, these models are often developed with assumptions, such as perfect data associations, that do not hold in the real world. Hence the resultant estimated uncertainty is a weak lower bound. To tackle this problem we present introspective perception - a novel approach for predicting accurate estimates of the uncertainty of perception algorithms deployed on mobile robots. By exploiting sensing redundancy and consistency constraints naturally present in the data collected by a mobile robot, introspective perception learns an empirical model of the error distribution of perception algorithms in the deployment environment and in an autonomously supervised manner. In this paper, we present the general theory of introspective perception and demonstrate successful implementations for two different perception tasks. We provide empirical results on challenging real-robot data for introspective stereo depth estimation and introspective visual simultaneous localization and mapping and show that they learn to predict their uncertainty with high accuracy and leverage this information to significantly reduce state estimation errors for an autonomous mobile robot

    Handling Artifacts in Dynamic Depth Sequences

    Get PDF
    Image sequences of dynamic scenes recorded using various depth imaging devices and handling the artifacts arising within are the main scope of this work. First, a framework for range flow estimation from Microsoft’s multi-modal imaging device Kinect is presented. All essential stages of the flow computation pipeline, starting from camera calibration, followed by the alignment of the range and color channels and finally the introduction of a novel multi-modal range flow algorithm which is robust against typical (technology dependent) range estimation artifacts are discussed. Second, regarding Time-of-Flight data, motion artifacts arise in recordings of dynamic scenes, caused by the sequential nature of the raw image acquisition process. While many methods for compensation of such errors have been proposed so far, there is still a lack of proper comparison. This gap is bridged here by not only evaluating all proposed methods, but also by providing additional insight in the technical properties and depth correction of the recorded data as base-line for future research. Exchanging the tap calibration model necessary for these methods by a model closer to reality improves the results of all related methods without any loss of performance

    3D laser scanner for underwater manipulation

    Get PDF
    Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF) fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS) is used to autonomously grasp an object from the bottom of a water tank
    corecore