4,196 research outputs found

    Polynomial approximation of functions of matrices and its application to the solution of a general system of linear equations

    Get PDF
    During the process of solving a mathematical model numerically, there is often a need to operate on a vector v by an operator which can be expressed as f(A) while A is NxN matrix (ex: exp(A), sin(A), A sup -1). Except for very simple matrices, it is impractical to construct the matrix f(A) explicitly. Usually an approximation to it is used. In the present research, an algorithm is developed which uses a polynomial approximation to f(A). It is reduced to a problem of approximating f(z) by a polynomial in z while z belongs to the domain D in the complex plane which includes all the eigenvalues of A. This problem of approximation is approached by interpolating the function f(z) in a certain set of points which is known to have some maximal properties. The approximation thus achieved is almost best. Implementing the algorithm to some practical problem is described. Since a solution to a linear system Ax = b is x= A sup -1 b, an iterative solution to it can be regarded as a polynomial approximation to f(A) = A sup -1. Implementing the algorithm in this case is also described

    Analysis of the Efficiency PETSc and PETIGA Libraries in Solving the Problem of Crystal Growth

    Full text link
    We present an analysis of high performance computational method for solving the problem of crystal grows. The method uses PETSc and PETIGA C-language based libraries and supports parallel computing. The evolution of calculation process was studied in series of special computations are obtained on innovative mobile cluster platform, which provides exclusive system tuning abilities. The results of research confirm the high efficiency of the proposed algorithm on multi-core computer systems and allow us to recommend the use of PETSc and PETIGA for solving high order differential equations

    A geometric multigrid library for quadtree/octree AMR grids coupled to MPI-AMRVAC

    Get PDF
    We present an efficient MPI-parallel geometric multigrid library for quadtree (2D) or octree (3D) grids with adaptive refinement. Cartesian 2D/3D and cylindrical 2D geometries are supported, with second-order discretizations for the elliptic operators. Periodic, Dirichlet, and Neumann boundary conditions can be handled, as well as free-space boundary conditions for 3D Poisson problems, for which we use an FFT-based solver on the coarse grid. Scaling results up to 1792 cores are presented. The library can be used to extend adaptive mesh refinement frameworks with an elliptic solver, which we demonstrate by coupling it to MPI-AMRVAC. Several test cases are presented in which the multigrid routines are used to control the divergence of the magnetic field in magnetohydrodynamic simulations

    A geometric multigrid library for quadtree/octree AMR grids coupled to MPI-AMRVAC

    Get PDF
    We present an efficient MPI-parallel geometric multigrid library for quadtree (2D) or octree (3D) grids with adaptive refinement. Cartesian 2D/3D and cylindrical 2D geometries are supported, with second-order discretizations for the elliptic operators. Periodic, Dirichlet, and Neumann boundary conditions can be handled, as well as free-space boundary conditions for 3D Poisson problems, for which we use an FFT-based solver on the coarse grid. Scaling results up to 1792 cores are presented. The library can be used to extend adaptive mesh refinement frameworks with an elliptic solver, which we demonstrate by coupling it to MPI-AMRVAC. Several test cases are presented in which the multigrid routines are used to control the divergence of the magnetic field in magnetohydrodynamic simulations
    corecore