68 research outputs found

    Multi-robot data mapping simulation by using microsoft robotics developer studio

    Get PDF
    This document summarizes the goals achieved in the development of a data mapping appli- cation, for a multi-robot system, implemented as a service with the guidelines found in the Service Oriented Computing paradigm (SOC). The obtained service generates both local and global maps in the reconstruction of a virtual scenario: the local maps represent the sur- rounding area around each one of the mobile robots, and the global one the totality of the scenario where the robots move. The information of the global map is continuously updated by merging the data coming from the local maps by using a novel approach: each one of the maps manages a confidence level value that defines which of the data coming from the maps is worthy of being updated into the global one. This technique is not present in related work. The Microsoft Robotics Developer Studio framework was chosen for its implementation because of the advantages that this tool offers in the management of concurrent and distrib- uted processes, typically found in both a robotics platform and in a multi-robot system

    Towards a Cyber-Physical Manufacturing Cloud through Operable Digital Twins and Virtual Production Lines

    Get PDF
    In last decade, the paradigm of Cyber-Physical Systems (CPS) has integrated industrial manufacturing systems with Cloud Computing technologies for Cloud Manufacturing. Up to 2015, there were many CPS-based manufacturing systems that collected real-time machining data to perform remote monitoring, prognostics and health management, and predictive maintenance. However, these CPS-integrated and network ready machines were not directly connected to the elements of Cloud Manufacturing and required human-in-the-loop. Addressing this gap, we introduced a new paradigm of Cyber-Physical Manufacturing Cloud (CPMC) that bridges a gap between physical machines and virtual space in 2017. CPMC virtualizes machine tools in cloud through web services for direct monitoring and operations through Internet. Fundamentally, CPMC differs with contemporary modern manufacturing paradigms. For instance, CPMC virtualizes machining tools in cloud using remote services and establish direct Internet-based communication, which is overlooked in existing Cloud Manufacturing systems. Another contemporary, namely cyber-physical production systems enable networked access to machining tools. Nevertheless, CPMC virtualizes manufacturing resources in cloud and monitor and operate them over the Internet. This dissertation defines the fundamental concepts of CPMC and expands its horizon in different aspects of cloud-based virtual manufacturing such as Digital Twins and Virtual Production Lines. Digital Twin (DT) is another evolving concept since 2002 that creates as-is replicas of machining tools in cyber space. Up to 2018, many researchers proposed state-of-the-art DTs, which only focused on monitoring production lifecycle management through simulations and data driven analytics. But they overlooked executing manufacturing processes through DTs from virtual space. This dissertation identifies that DTs can be made more productive if they engage directly in direct execution of manufacturing operations besides monitoring. Towards this novel approach, this dissertation proposes a new operable DT model of CPMC that inherits the features of direct monitoring and operations from cloud. This research envisages and opens the door for future manufacturing systems where resources are developed as cloud-based DTs for remote and distributed manufacturing. Proposed concepts and visions of DTs have spawned the following fundamental researches. This dissertation proposes a novel concept of DT based Virtual Production Lines (VPL) in CPMC in 2019. It presents a design of a service-oriented architecture of DTs that virtualizes physical manufacturing resources in CPMC. Proposed DT architecture offers a more compact and integral service-oriented virtual representations of manufacturing resources. To re-configure a VPL, one requirement is to establish DT-to-DT collaborations in manufacturing clouds, which replicates to concurrent resource-to-resource collaborations in shop floors. Satisfying the above requirements, this research designs a novel framework to easily re-configure, monitor and operate VPLs using DTs of CPMC. CPMC publishes individual web services for machining tools, which is a traditional approach in the domain of service computing. But this approach overcrowds service registry databases. This dissertation introduces a novel fundamental service publication and discovery approach in 2020, OpenDT, which publishes DTs with collections of services. Experimental results show easier discovery and remote access of DTs while re-configuring VPLs. Proposed researches in this dissertation have received numerous citations both from industry and academia, clearly proving impacts of research contributions

    Towards edge robotics: the progress from cloud-based robotic systems to intelligent and context-aware robotic services

    Get PDF
    Current robotic systems handle a different range of applications such as video surveillance, delivery of goods, cleaning, material handling, assembly, painting, or pick and place services. These systems have been embraced not only by the general population but also by the vertical industries to help them in performing daily activities. Traditionally, the robotic systems have been deployed in standalone robots that were exclusively dedicated to performing a specific task such as cleaning the floor in indoor environments. In recent years, cloud providers started to offer their infrastructures to robotic systems for offloading some of the robot’s functions. This ultimate form of the distributed robotic system was first introduced 10 years ago as cloud robotics and nowadays a lot of robotic solutions are appearing in this form. As a result, standalone robots became software-enhanced objects with increased reconfigurability as well as decreased complexity and cost. Moreover, by offloading the heavy processing from the robot to the cloud, it is easier to share services and information from various robots or agents to achieve better cooperation and coordination. Cloud robotics is suitable for human-scale responsive and delay-tolerant robotic functionalities (e.g., monitoring, predictive maintenance). However, there is a whole set of real-time robotic applications (e.g., remote control, motion planning, autonomous navigation) that can not be executed with cloud robotics solutions, mainly because cloud facilities traditionally reside far away from the robots. While the cloud providers can ensure certain performance in their infrastructure, very little can be ensured in the network between the robots and the cloud, especially in the last hop where wireless radio access networks are involved. Over the last years advances in edge computing, fog computing, 5G NR, network slicing, Network Function Virtualization (NFV), and network orchestration are stimulating the interest of the industrial sector to satisfy the stringent and real-time requirements of their applications. Robotic systems are a key piece in the industrial digital transformation and their benefits are very well studied in the literature. However, designing and implementing a robotic system that integrates all the emerging technologies and meets the connectivity requirements (e.g., latency, reliability) is an ambitious task. This thesis studies the integration of modern Information andCommunication Technologies (ICTs) in robotic systems and proposes some robotic enhancements that tackle the real-time constraints of robotic services. To evaluate the performance of the proposed enhancements, this thesis departs from the design and prototype implementation of an edge native robotic system that embodies the concepts of edge computing, fog computing, orchestration, and virtualization. The proposed edge robotics system serves to represent two exemplary robotic applications. In particular, autonomous navigation of mobile robots and remote-control of robot manipulator where the end-to-end robotic system is distributed between the robots and the edge server. The open-source prototype implementation of the designed edge native robotic system resulted in the creation of two real-world testbeds that are used in this thesis as a baseline scenario for the evaluation of new innovative solutions in robotic systems. After detailing the design and prototype implementation of the end-to-end edge native robotic system, this thesis proposes several enhancements that can be offered to robotic systems by adapting the concept of edge computing via the Multi-Access Edge Computing (MEC) framework. First, it proposes exemplary network context-aware enhancements in which the real-time information about robot connectivity and location can be used to dynamically adapt the end-to-end system behavior to the actual status of the communication (e.g., radio channel). Three different exemplary context-aware enhancements are proposed that aim to optimize the end-to-end edge native robotic system. Later, the thesis studies the capability of the edge native robotic system to offer potential savings by means of computation offloading for robot manipulators in different deployment configurations. Further, the impact of different wireless channels (e.g., 5G, 4G andWi-Fi) to support the data exchange between a robot manipulator and its remote controller are assessed. In the following part of the thesis, the focus is set on how orchestration solutions can support mobile robot systems to make high quality decisions. The application of OKpi as an orchestration algorithm and DLT-based federation are studied to meet the KPIs that autonomously controlledmobile robots have in order to provide uninterrupted connectivity over the radio access network. The elaborated solutions present high compatibility with the designed edge robotics system where the robot driving range is extended without any interruption of the end-to-end edge robotics service. While the DLT-based federation extends the robot driving range by deploying access point extension on top of external domain infrastructure, OKpi selects the most suitable access point and computing resource in the cloud-to-thing continuum in order to fulfill the latency requirements of autonomously controlled mobile robots. To conclude the thesis the focus is set on how robotic systems can improve their performance by leveraging Artificial Intelligence (AI) and Machine Learning (ML) algorithms to generate smart decisions. To do so, the edge native robotic system is presented as a true embodiment of a Cyber-Physical System (CPS) in Industry 4.0, showing the mission of AI in such concept. It presents the key enabling technologies of the edge robotic system such as edge, fog, and 5G, where the physical processes are integrated with computing and network domains. The role of AI in each technology domain is identified by analyzing a set of AI agents at the application and infrastructure level. In the last part of the thesis, the movement prediction is selected to study the feasibility of applying a forecast-based recovery mechanism for real-time remote control of robotic manipulators (FoReCo) that uses ML to infer lost commands caused by interference in the wireless channel. The obtained results are showcasing the its potential in simulation and real-world experimentation.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Karl Holger.- Secretario: Joerg Widmer.- Vocal: Claudio Cicconett

    Internet of Robotic Things Intelligent Connectivity and Platforms

    Get PDF
    The Internet of Things (IoT) and Industrial IoT (IIoT) have developed rapidly in the past few years, as both the Internet and “things” have evolved significantly. “Things” now range from simple Radio Frequency Identification (RFID) devices to smart wireless sensors, intelligent wireless sensors and actuators, robotic things, and autonomous vehicles operating in consumer, business, and industrial environments. The emergence of “intelligent things” (static or mobile) in collaborative autonomous fleets requires new architectures, connectivity paradigms, trustworthiness frameworks, and platforms for the integration of applications across different business and industrial domains. These new applications accelerate the development of autonomous system design paradigms and the proliferation of the Internet of Robotic Things (IoRT). In IoRT, collaborative robotic things can communicate with other things, learn autonomously, interact safely with the environment, humans and other things, and gain qualities like self-maintenance, self-awareness, self-healing, and fail-operational behavior. IoRT applications can make use of the individual, collaborative, and collective intelligence of robotic things, as well as information from the infrastructure and operating context to plan, implement and accomplish tasks under different environmental conditions and uncertainties. The continuous, real-time interaction with the environment makes perception, location, communication, cognition, computation, connectivity, propulsion, and integration of federated IoRT and digital platforms important components of new-generation IoRT applications. This paper reviews the taxonomy of the IoRT, emphasizing the IoRT intelligent connectivity, architectures, interoperability, and trustworthiness framework, and surveys the technologies that enable the application of the IoRT across different domains to perform missions more efficiently, productively, and completely. The aim is to provide a novel perspective on the IoRT that involves communication among robotic things and humans and highlights the convergence of several technologies and interactions between different taxonomies used in the literature.publishedVersio

    Model similarity evidence and interoperability affinity in cloud-ready Industry 4.0 technologies

    Get PDF
    Cloud computing is revolutionizing IT environments in most fields of economy. Its service-based approach enables collaboration and data exchange on higher level, with better efficiency and parallel decreasing costs. Also manufacturing environments can benefit from cloud technology and better fulfill fast changes in market demands, by applying diverse cloud deployment models and by virtualizing manufacturing processes and assets into services. As cloud becomes the basis of most innovative manufacturing IT systems, its future role in Cyber-physical Production Systems has to be properly investigated, as their interoperability will play a role of vital importance. In this paper, after a brief introduction to cloud criticality and cloud-based manufacturing, the mutual conceptual similarities in modelling distributed industrial services of two of the major standardization frameworks for industrial Internet architectures are presented: the Industrial Internet Reference Architecture (IIRA) and the Reference Architectural Model Industrie (RAMI 4.0). It is also introduced how their integration feasibility finds a strong affinity in specifications of the Open Connectivity Unified Architecture, a service-oriented architecture candidate to the standardization of Industrial Internet of Things based manufacturing platforms. Finally, the preliminary architecture of a prototype Smart Factory is presented as a case study

    Softwarization of Large-Scale IoT-based Disasters Management Systems

    Get PDF
    The Internet of Things (IoT) enables objects to interact and cooperate with each other for reaching common objectives. It is very useful in large-scale disaster management systems where humans are likely to fail when they attempt to perform search and rescue operations in high-risk sites. IoT can indeed play a critical role in all phases of large-scale disasters (i.e. preparedness, relief, and recovery). Network softwarization aims at designing, architecting, deploying, and managing network components primarily based on software programmability properties. It relies on key technologies, such as cloud computing, Network Functions Virtualization (NFV), and Software Defined Networking (SDN). The key benefits are agility and cost efficiency. This thesis proposes softwarization approaches to tackle the key challenges related to large-scale IoT based disaster management systems. A first challenge faced by large-scale IoT disaster management systems is the dynamic formation of an optimal coalition of IoT devices for the tasks at hand. Meeting this challenge is critical for cost efficiency. A second challenge is an interoperability. IoT environments remain highly heterogeneous. However, the IoT devices need to interact. Yet another challenge is Quality of Service (QoS). Disaster management applications are known to be very QoS sensitive, especially when it comes to delay. To tackle the first challenge, we propose a cloud-based architecture that enables the formation of efficient coalitions of IoT devices for search and rescue tasks. The proposed architecture enables the publication and discovery of IoT devices belonging to different cloud providers. It also comes with a coalition formation algorithm. For the second challenge, we propose an NFV and SDN based - architecture for on-the-fly IoT gateway provisioning. The gateway functions are provisioned as Virtual Network Functions (VNFs) that are chained on-the-fly in the IoT domain using SDN. When it comes to the third challenge, we rely on fog computing to meet the QoS and propose algorithms that provision IoT applications components in hybrid NFV based - cloud/fogs. Both stationary and mobile fog nodes are considered. In the case of mobile fog nodes, a Tabu Search-based heuristic is proposed. It finds a near-optimal solution and we numerically show that it is faster than the Integer Linear Programming (ILP) solution by several orders of magnitude

    ROS-based Solution for Robotic Services in Cloud Computing

    Get PDF
    Robot Operating System (ROS) is becoming a widely-used environment for devel- oping robot software systems. It provides unique features such as message-passing between processes and code reuse between robots. The new trend in ROS-based robotic systems is facing the development and delivery of effective services by com- bining the advantages of both cloud robotics and web services. Cloud robotics is the way that allows robots to overcome their limitations of pro- cessing and knowledge by boosting computational and cognitive capabilities. On the other hand, as an implementation of Service-Oriented Architecture (SOA), web Services allow mainly different ROS codes to be discovered over the internet for their reuse. However, the characterization, description, and discovery of the ROS service capability for the offered robotic functionality are still issues that are not fully ad- dressed. In this context, we focus in this thesis on developing an architecture for roboti software provisioning to both software developers and robots by exploiting the op- portunities of ROS, web services, and cloud robotics. We propose a complete SOA approach for cloud robotics, in which ROS-based robotic tasks are defined as web services. The approach focuses on defining the service cycle process of describing, discovering, and selecting services. Two characterizations for ROS web services are proposed. The service characterizations describe the semantic representation of the robot task from ROS itself. In each case, we present a strategy that allows users todiscover the relevant robotic service that can match their queries and robots
    corecore