6,570 research outputs found

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    IoT based model of healthcare for physiotherapy

    Get PDF
    Trabalho apresentado em 13th International Conference on Sensing Technology (ICST 2019), dezembro 2019, Sydney, Austrália.Small and reliable devices that are used not only in clinics or hospital but also in home, give information on movements, activities or other relevant data on person health and functioning. The data acquired by these devices would increase the accessibility to healthcare services and quality of care, in a safe environment. There are scarce data related to integration of Internet of Things (IoT) technologies into information system for physiotherapy or motor rehabilitation. In this work it is presented a framework for IoT based information system for physiotherapy. The presented model for physiotherapy includes: the capacity of IoT based information system to receive inputs from different modalities; support for modularity and common communication technologies for IoT; gateway capabilities and/or edge computing; data storage and analysis in Server, Cloud Server or Microservices. Research is needed for better understanding what is the optimal model and architecture for IoT platforms targeting people with different types of disabilities, as well as an optimal universal design that may increase the quality of care for people with disability.info:eu-repo/semantics/publishedVersio

    Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology

    Get PDF
    EEG-based Brain-computer interfaces (BCI) are facing grant challenges in their real-world applications. The technical difficulties in developing truly wearable multi-modal BCI systems that are capable of making reliable real-time prediction of users’ cognitive states under dynamic real-life situations may appear at times almost insurmountable. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report our attempt to develop a pervasive on-line BCI system by employing state-of-art technologies such as multi-tier fog and cloud computing, semantic Linked Data search and adaptive prediction/classification models. To verify our approach, we implement a pilot system using wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end fog servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end cloud servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch and the UCSD Movement Disorder Center to use our system in real-life personal stress and in-home Parkinson’s disease patient monitoring experiments. We shall proceed to develop a necessary BCI ontology and add automatic semantic annotation and progressive model refinement capability to our system

    Towards a global participatory platform: Democratising open data, complexity science and collective intelligence

    Get PDF
    The FuturICT project seeks to use the power of big data, analytic models grounded in complexity science, and the collective intelligence they yield for societal benefit. Accordingly, this paper argues that these new tools should not remain the preserve of restricted government, scientific or corporate élites, but be opened up for societal engagement and critique. To democratise such assets as a public good, requires a sustainable ecosystem enabling different kinds of stakeholder in society, including but not limited to, citizens and advocacy groups, school and university students, policy analysts, scientists, software developers, journalists and politicians. Our working name for envisioning a sociotechnical infrastructure capable of engaging such a wide constituency is the Global Participatory Platform (GPP). We consider what it means to develop a GPP at the different levels of data, models and deliberation, motivating a framework for different stakeholders to find their ecological niches at different levels within the system, serving the functions of (i) sensing the environment in order to pool data, (ii) mining the resulting data for patterns in order to model the past/present/future, and (iii) sharing and contesting possible interpretations of what those models might mean, and in a policy context, possible decisions. A research objective is also to apply the concepts and tools of complexity science and social science to the project's own work. We therefore conceive the global participatory platform as a resilient, epistemic ecosystem, whose design will make it capable of self-organization and adaptation to a dynamic environment, and whose structure and contributions are themselves networks of stakeholders, challenges, issues, ideas and arguments whose structure and dynamics can be modelled and analysed. Graphical abstrac

    BC4LLM: Trusted Artificial Intelligence When Blockchain Meets Large Language Models

    Full text link
    In recent years, artificial intelligence (AI) and machine learning (ML) are reshaping society's production methods and productivity, and also changing the paradigm of scientific research. Among them, the AI language model represented by ChatGPT has made great progress. Such large language models (LLMs) serve people in the form of AI-generated content (AIGC) and are widely used in consulting, healthcare, and education. However, it is difficult to guarantee the authenticity and reliability of AIGC learning data. In addition, there are also hidden dangers of privacy disclosure in distributed AI training. Moreover, the content generated by LLMs is difficult to identify and trace, and it is difficult to cross-platform mutual recognition. The above information security issues in the coming era of AI powered by LLMs will be infinitely amplified and affect everyone's life. Therefore, we consider empowering LLMs using blockchain technology with superior security features to propose a vision for trusted AI. This paper mainly introduces the motivation and technical route of blockchain for LLM (BC4LLM), including reliable learning corpus, secure training process, and identifiable generated content. Meanwhile, this paper also reviews the potential applications and future challenges, especially in the frontier communication networks field, including network resource allocation, dynamic spectrum sharing, and semantic communication. Based on the above work combined and the prospect of blockchain and LLMs, it is expected to help the early realization of trusted AI and provide guidance for the academic community
    • …
    corecore